• Title/Summary/Keyword: High-resolution SAR

Search Result 215, Processing Time 0.026 seconds

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.

Application and Development of Integration Technique to Generate Land-cover and Soil Moisture Map Using High Resolution Optical and SAR images

  • Kim Ji-Eun;Park Sang-Eun;Kim Duk-jin;Kim Jun-su;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.497-500
    • /
    • 2005
  • Research and development of remote sensing technique is necessary so that more accurate and extensive information may be obtained. To achieve this goal, the synthesized technique which integrates the high resolution optic and SAR image, and topographical information was examined to investigate the quantitative/qualitative characteristics of the Earth's surface environment. For this purpose, high-precision DEMs of Jeju-Island was generated and data fusion algorithm was developed in order to integrate the multi-spectral optic and polarimetric SAR image. Three dimensional land-cover and two dimensional soil moisture maps were generated conclusively so as to investigate the Earth's surface environments and extract the geophysical parameters.

  • PDF

Detection of Group of Targets Using High Resolution Satellite SAR and EO Images (고해상도 SAR 영상 및 EO 영상을 이용한 표적군 검출 기법 개발)

  • Kim, So-Yeon;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • In this study, the target detection using both high-resolution satellite SAR and Elecro-Optical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/$64km^2$ and the false alarms of single target range from 0.03 to 0.3 targets/$km^2$. The results show that groups of targets are successfully identified with very low false alarms.

Development a GB-SAR (I) : System Configuration and Interferometry (GB-SAR의 개발 (I) : 시스템 구성과 간섭기법)

  • Lee, Hoon-Yol;Sung, Nak-Hoon;Kim, Jung-Ho;Cho, Seong-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.237-245
    • /
    • 2007
  • GB-SAR (Ground-Based Synthetic Aperture Radar) system is an imaging radar that obtains high resolution 2-D image through a synthetic aperture effect from the accurate linear-motion control of antenna on the ground. The highly versatile system configurations and accurate repeatability of GB-SAR operation allow one to accurately monitor the stability of surface scatterers with millimeter accuracy by SAR interferometry. In this paper we introduce the development of a GB-SAR system and show the possibilities of SAR polarimetry and interferometry such as DInSAR, Cross-Track InSAR, Delta-f InSAR, and PSInSAR.

Comparison and Analysis of Techniques for Achieving Azimuth Resolution of Imaging Radar (영상레이다의 방위 해상도 구현기법 비교 분석)

  • Hong, In-Pyo;kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.185-196
    • /
    • 1997
  • By considering the definition and application of resolution as well as the concept and theory of SAR, the essential contents of the SAR design and analysis are described. This paper is to compare and analyze the resolution performance capability of three techniques for achieving azimuth resolution such as the real aperture, the unfocused and the focused techniques, through the simulation. Simulation is performed to make the restricted conditions for the unfocused technique that can be implemented by the less commputing load of signal processingand the lower cost. Through the mission analysis, the use of SAR image can be applied for estimation of whole situation at the regional area in the field of military demands for tactical purpose as well as civilian demands for the damage of disaster. RPV and sall or medium aircraft are selected to carry the SAR for these purposes and the proper resolution turns ou 5~15 m. The trade-off study of variables through the simulations results in the proper conditions such that range is less 3, 000 m, Wavelength is 1~10 m, and the raw signals and results processed by three techniques for two point targets are exhibited undr such conditions. Therefore, at some points, the result of this paper si proposed for useful applications of unforcused technique in the restricted conditions except the identification of the small target at a long range re- quired for high resolution.

  • PDF

Accuracy Analysis of DEMs Generated from High Resolution Optical and SAR Images (고해상도 광학영상과 SAR영상으로부터 생성된 수치표고모델의 정확도 분석)

  • Kim, Chung;Lee, Dong-Cheon;Yom, Jae-Hong;Lee, Young-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.337-343
    • /
    • 2004
  • Spatial information could be obtained from spaceborne high resolution optical and synthetic aperture radar(SAR) images. However, some satellite images do not provide physical sensor information instead, rational polynomial coefficients(RPC) are available. The objectives of this study are: (1) 3-dimensional ground coordinates were computed by applying rational function model(RFM) with the RPC for the stereo pair of Ikonos images and their accuracy was evaluated. (2) Interferometric SAR(InSAR) was applied to JERS-1 images to generate DEM and its accuracy was analysis. (3) Quality of the DEM generated automatically also analyzed for different types of terrain in the study site. The overall accuracy was evaluated by comparing with GPS surveying data. The height offset in the RPC was corrected by estimating bias. In consequence, the accuracy was improved. Accuracy of the DEMs generated from InSAR with different selection of GCP was analyzed. In case of the Ikonos images, the results show that the overall RMSE was 0.23327", 0.l1625" and 13.70m in latitude, longitude and height, respectively. The height accuracy was improved after correcting the height offset in the RPC. i.e., RMSE of the height was 1.02m. As for the SAR image, RMSE of the height was 10.50m with optimal selection of GCP. For the different terrain types, the RMSE of the height for urban, forest and flat area was 23.65m, 8.54m, 0.99m, respectively for Ikonos image while the corresponding RMSE was 13.82m, 18.34m, 10.88m, respectively lot SAR image.

  • PDF

Requirements of processing parameters for Multi-Satellites SAR Data Focusing Software

  • Kwak Sunghee;Kim Kwang Yong;Lee Young-Ran;Shin Dongseok;Jeong Soo;Kim Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.401-404
    • /
    • 2004
  • SAR (Synthetic Aperture Radar) signal data need a focusing procedure to make the information available to the user. In recent SAR systems, various sensing modes and mission operations are applied to acquire high-resolution SAR images. Therefore, in order to develop generalized focusing software for multi-satellites, a regularized parameter configuration that sufficiently represents sensor and platform characteristics of the SAR system is required. The objective of this paper is to introduce the consideration of parameter definition for developing a generalized SAR processor and to discuss the flexibility and extensibility of defined parameters. The proposed parameter configuration can be applied to a SAR processor. Experiments based on real data will show the suitability of the suggested processing parameters.

  • PDF

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Analysis of SAR Image Quality Degradation due to Pointing and Stability Error of Synthetic Aperture Radar Satellite (위성체 지향 및 안정화 오차로 인한 영상레이더 위성 영상 품질 저하 해석)

  • Chun, Yong-Sik;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.445-458
    • /
    • 2008
  • Image chain analysis of synthetic aperture radar (SAR) satellite is one of the primary activities for satellite design because SAR image quality depends on spacecraft bus performance as well as SAR payload. Especially, satellite pointing and stability error make worst effect on the original SAR image quality which is implemented by SAR payload design. In this research, Image chain analysis S/W was developed in order to analyze the SAR image quality degradation due to satellite pointing and stability error. This S/W consists of orbit model, attitude control model, SAR payload model, clutter model, and SAR processor. SAR raw data, which includes total 25 point targets in the scene of $5km{\times}5km$ swath width, was generated and then processed for analysis. High resolution mode (spotlight), of which resolution is 1m, was applied. The results of image chain analysis show that radiometric accuracy is the most degraded due to the pointing error. Therefore, the successful design of attitude control subsystem in spacecraft bus for enhancing the pointing accuracy is most important for image quality.

Extraction of Ground Control Points from TerraSAR-X Data (TerraSAR-X를 이용한 지상기준점 추출)

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.299-307
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) from SAR data itself without published maps. TerraSAR-X data that are one of highest spatial resolution among civilian SAR systems is now available. In this study, a sophisticated method for GCP extraction from TerraSAR-X data was tested and the quality of the extracted GCPs was evaluated. Mean values of the distance errors were 0.11m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from any civilian remote sensing systems. The extracted GCPs were used for geo-rectification of IKONOS image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.