• Title/Summary/Keyword: High-resolution SAR

Search Result 215, Processing Time 0.026 seconds

SAR Image Processing Using SVD-Pseudo Spectrum Technique (SAR에 적용된 SVD-Pseudo Spectrum 기술)

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • This paper presents an SVD(Singular Value Decomposition)-Pseudo Spectrum method for SAR (Synthetic Aperture Radar) imaging. The purpose of this work is to improve resolution and target separability of SAR images. This paper proposes SVD-Pseudo Spectrum method whose advantages are noise robustness, reduction of sidelobes and high resolution of spectral estimation. SVD-Pseudo Spectrum method uses Hankel Matrix of signal components and SVD (Singular Value Decomposition) method. In this paper, it is demonstrated that the SVD-Pseudo Spectrum method shows better performance than the matched filtering method and the conventional super-resolution based multiple signal classification (MUSIC) method in SAR image processing. The targets to be separated are modeled, and this modeled data is used to demonstrate the performance of algorithms.

Design of Timing Register Structure for Area Optimization of High Resolution and Low Power SAR ADC (고해상도 저전력 SAR ADC의 면적 최적화를 위한 타이밍 레지스터 구조 설계)

  • Min, Kyung-Jik;Kim, Ju-Sung;Cho, Hoo-Hyun;Pu, Young-Gun;Hur, Jung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, a timing register architecture using demultiplexer and counter is proposed to reduce the area of the high resolution SAR type analog to digital converter. The area and digital power consumption of the conventional timing register based on the shift register is drastically increased, as the resolution is increased. On the other hand, the proposed architecture results in reduction of the area and the power consumption of the error correction logic of the SAR ADC. This chip is implemented with 0.18 um CMOS process. The area is reduced by 5.4 times and the digital power consumption is minimized compared with the conventional one. The 12 bits SAR ADC shows ENOB of 11 bits, power consumption of 2 mW, and conversion speed of 1 MSPS. The die area is $1 mm{\times}1mm$.

A study on the application of high resolution K5 SAR images (다목적 위성 5호 고해상도 SAR 영상의 활용 방안 연구)

  • Yu, Sujin;Song, Kyoungmin;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • Recently, the demand for SAR imaging is growing to monitor natural disasters or military sites to foresee topographic changes, where optical sensing is not easily available. High-resolution SAR images are useful in exploring topography and monitoring artificial land objects in all weather conditions. In this paper,high resolution SAR images acquired from KOMPSAT-5 are exploited for the applications of change detection and classification. In order to detect change areas, amplitude change detection (ACD) and coherence change detection (CCD) algorithms are employed and their performances are compared in practical applications. For enhanced performance, the potential of small scaled change detection is explored by combining multi-temporary SAR images. The k-means and SVM methods are applied for land classifications and their performances are compared by applying to the real spaceborne SAR images.

Multi-Channel Data Link Module Design for High Speed Image Data Transmission from Spaceborne SAR (위성 영상 레이다의 고속자료 전송을 위한 멀티 채널 데이터 전송 모듈 설계와 성능 특징)

  • Kwag, Young-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution. It is due to the strict requirement for the real-time data transmission from a series of massive raw image data of spaceborne SAR to the ground station in a limited time of mission. In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

Implementation of a SAR GeoCoding Module based on component

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.337-339
    • /
    • 2003
  • This paper describes the SAR geocoding module, which is the sub-module of a IRHIS ('Integrated RS s/w for High resolution satellite ImageS'): package of 'Development of High Resolution Satellite Image Processing Technique' project in Electronics and Telecommunications Research Institute (ETRI). The function of this module is following. 1) Orbit Type : ERS1/ERS2, RADARSAT 2) Data Format : SAR CEOS Format(Single Look Complex) 3) Function: - Geocode : Generate a map projected SAR image based on only orbit information - Orthorectify: Generate a rigorous geocoded SAR image with a DEM information In this paper, we briefly describe the algorithm that is adopted to the functions, and component architecture.

  • PDF

Simulation and Colorization between Gray-scale Images and Satellite SAR Images Using GAN (GAN을 이용한 흑백영상과 위성 SAR 영상간의 모의 및 컬러화)

  • Jo, Su Min;Heo, Jun Hyuk;Eo, Yang Dam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • Optical satellite images are being used for national security and collection of information, and their utilization is increasing. However, it acquires low-quality images that are not suitable for the user's requirement due to weather conditions and time constraints. In this paper, a deep learning-based conversion of image and colorization model referring to high-resolution SAR images was created to simulate the occluded area with clouds of optical satellite images. The model was experimented according to the type of algorithm applied and input data, and each simulated images was compared and analyzed. In particular, the amount of pixel value information between the input black-and-white image and the SAR image was similarly constructed to overcome the problem caused by the relatively lack of color information. As a result of the experiment, the histogram distribution of the simulated image learned with the Gray-scale image and the high-resolution SAR image was relatively similar to the original image. In addition, the RMSE value was about 6.9827 and the PSNR value was about 31.3960 calculated for quantitative analysis.

PHASE-EXTENST10N INVERSE FILTERING ON REAL SAR IMAGES (실제 SAR 영상에 대한 위상 확장 역필터링의 적용)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.547-550
    • /
    • 2001
  • Through matched filtering synthetic aperture radar (SAR) produces high-resolution imagery from data collected by a relative small antenna. While the impulse response obtained by the matched filter approach produces the best achievable signal-to-noise ratio, large sidelobes must be reduced to obtain higher-resolution SAR images. So, many enhancement methods of SAR imagery have been proposed. As a deconvolution method, the phase-extension inverse filtering is based on the characteristics of the matched filtering used in SAR imaging. It improves spatial resolution as well as effectively suppresses the sidelobes with low computational complexity. In the phase-extension inverse filtering, the impulse response is obtained from simulation with a point target. But in a real SAR environment, for example ERS-1, the impulse response is distorted by many non-ideal factors. So, in the phase-extension inverse filtering for a real SAR processing, the magnitudes of the frequency transfer function have to be compensated to produce more desirable results. In this paper, an estimation method to obtain a more accurate impulse response from a real SAR image is studied. And a compensation scheme to produce better performance of the phase-extension inverse filtering is also introduced.

  • PDF

SURFACE DEFORMATION MONITORING USING TERRASAR-X INTERFEROMETRY

  • Kim, Sang-Wan;Wdowinski, Shimon;Dixon, Tim
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.422-425
    • /
    • 2008
  • TerraSAR-X is new radar satellite operated at X-band, multi polarization, and multi beam mode. Compared with C-band or L-band SAR, the X-band system inherently suffers from more temporal decorrelation, but is more sensitive to surface deformation monitoring due to short wavelength (3.1 cm) and high spatial resolution (1m-3m). It is generally expected that sensitivity to estimate surface movement using TerraSAR-X will be increased by the factor of 10, compared to current C-band system with low spatial resolution such as ERS-2, Envisat. Many urban areas are experiencing land subsidence due to water, oil and natural gas withdrawal, underground excavation, sediment compaction, and so on. Monitoring of surface deformation is valuable for effectively limiting damage areas. In addition high accuracy and spatially dense subsidence map can be achieved by X-band InSAR observation, promoting identification and separation of various subsidence processes and leading to enhanced understanding via mechanical modeling. In this study we will introduce some initial InSAR results using new TerraSAR-X SAR data for surface deformation monitoring.

  • PDF

Automatic Estimation of Geometric Translations Between High-resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 자동 변위량 추정)

  • Han, You Kyung;Byun, Young Gi;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Using multi-sensor or multi-temporal high resolution satellite images together is essential for efficient applications in remote sensing area. The purpose of this paper is to estimate geometric difference of translations between high-resolution optical and SAR images automatically. The geometric and radiometric pre-processing steps were fulfilled to calculate the similarity between optical and SAR images by using Mutual Information method. The coarsest-level pyramid images of each sensor constructed by gaussian pyramid method were generated to estimate the initial translation difference of the x, y directions for calculation efficiency. The precise geometric difference of translations was able to be estimated by applying this method from coarsest-level pyramid image to original image in order. Yet even when considered only translation between optical and SAR images, the proposed method showed RMSE lower than 5m in all study sites.

RADARGRAMMETRY OF HIGH RESOLUTION SYNTHETIC APERTURE RADAR;A THEORETICAL STUDY

  • Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.266-269
    • /
    • 2007
  • This paper reports the preliminary results on the study of radargrammetry especially for a high-resolution satellite synthetic aperture radar system. Theoretical configurations for radargrammetry in terms of coverage, orbit selection, incidence angles, height sensitivity of parallax and height resolution of DEM were calculated according to the proposed orbit characteristics and the imaging modes of KOMPSAT-5 SAR. Possible imaging strategies and mission scenarios for coverage versus rapidity are suggested for a future mission dedicated to radargrammetry.

  • PDF