• 제목/요약/키워드: High-pressure injection

검색결과 865건 처리시간 0.027초

정적챔버에서 GDI용 연료분사기의 가솔린, M85, E85 및 LPG 분무 계측 (The Spray Measurements of Gasoline, M85, E85, and LPG by a GDI Injector in a Constant Volume Chamber)

  • 김성수
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.5-10
    • /
    • 2012
  • Spray structures and penetration lengths of Gasoline, M85, E85, and LPG by a GDI 6-hole fuel injector were examined in a constant volume chamber. The chamber pressure was controlled at 0.1 MPa and 0.9 MPa. The effects of fuel injection pressure and chamber pressure on the spray structures and penetration lengths were investigated using the 2-dimensional Mie scattering technique. It was found that the sprays developed linearly till ASOI 1.7ms after start of injection and vortices were happened around jets on the way of spray development. And the high chamber pressure, 0.9 MPa kept the fuel sprays development down and the penetration length was reduced to about 55% compared with that of 0.1 MPa. In additions high pressure of fuel injection, 12 MPa increased the spray penetration length more about 7~10% than that of 7 MPa.

가솔린 직접분사식 고압 슬릿 노즐의 팬형 분무 특성 고찰 (Fan-shaped Spray Characteristics of High Pressure Slit Nozzle in a Gasoline Direct Injection Engine)

  • 송범근;김종민;강신재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2239-2244
    • /
    • 2003
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

  • PDF

An Analysis on Structure of Impinging and Free Diesel Spray with Exciplex Fluorescence Method in High Temperature and Pressure Field

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2281-2288
    • /
    • 2005
  • Because an injected spray development process consists of impinging and free spray in the diesel engine, it is needed to analyze the impinging spray and free spray, simultaneously, in order to study the diesel spray behavior. To dominate combustion characteristics in diesel engine is interaction between injected fuel and ambient gas, that is, process of mixture formation. Also it is very important to analyze liquid and vapor phases of injected fuel on the investigation of mixing process, respectively and simultaneously. Therefore, in this study, the behavior characteristics of the liquid phase and the vapor phase of diesel spray was studied by using exciplex fluorescence method in high temperature and injection pressure field. Finally, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.

고압 천연 가스 인젝터의 분무 특성에 관한 연구 (An Investigation on the Spray Characteristics of a Compressed Natural Gas Injector)

  • 삭다 통차이;강유진;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.219-225
    • /
    • 2018
  • This study was carried out to investigate the injection characteristics of 800 kPa compressed natural gas compressed natural gas (CNG) injector developed in Korea. The CNG injector with multi-holes, employed in this experiment, was designed to inject CNG in the manifold at high pressure of 800 kPa. The spray macroscopic visualization test was carried out via Schlieren photography to study fuel-air mixing process. The fundamental spray characteristics, such as spray penetration, spray cone angle and spray velocity, were evaluated in the constant volume combustion chamber (CVCC) with varying the constant back pressure in CVCC from 0 to 1.8 bar. For the safety reason, nitrogen ($N_2$) and an acetone tracer were utilized as a surrogate gas fuel instead of CNG. The surrogate gas fuel pressures were controlled at 3, 5.5, and 8 bar, respectively. Injection durations were set at 5 ms throughout the experiment. The simulating events of the low engine speed were arranged at 1,000 rpm. The spray images were recorded by using a high-speed camera with a frame rate of 10,000 f/s at $512{\times}256pixels$. The spray characteristics were analyzed by using the image processing (Matlab). The results showed the significant difference that higher injection pressure had more effect on the spray shape than the lower injection pressure. When the injection pressure was increased, the longer spray penetration occurred. Moreover, the linear relation between speed and time are dependent on the injection pressure as well.

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.

DME 분사 시기 조절을 통한 수소-DME 부분 예혼합 압축착화 연소 제어 (Combustion Control through the DME Injection Timing in the Hydrogen-DME Partially Premixed Compression Ignition Engine)

  • 전지연;배충식
    • 한국연소학회지
    • /
    • 제18권1호
    • /
    • pp.27-33
    • /
    • 2013
  • Hydrogen-dimethy ether(DME) partially premixed compression ignition(PCCI) engine combustion was investigated in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME was injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME inejction timing was varied to find the optimum PCCI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. As the DME injection was retarded, the CO and HC emissions were decreased due to high combustion efficiency. NOx emissions were increased due to the high in-cylinder temperature. When DME were injected at $-30^{\circ}CA$ aTDC, reduction of HC, CO and NOx emissions was possible with high value of IMEP.

거친 청감을 유발하는 엔진소음 개선 방향 고찰 (Improvement of engine noise causing rough sound quality)

  • 정인수;김석준;조덕형
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.242-247
    • /
    • 2018
  • 지속적으로 강화되는 배기가스 및 연비 규제에 대응하기 위해 자동차 업계에서는 다양한 노력을 하고 있다. 하지만 이로 인해 NVH(Noise, Vibration, and Harshness) 성능이 악화되는 경우들이 많이 발생하고 있다. 사례로 가솔린 엔진의 고압 펌프 소음 및 MPI(Multi-Point Injection)와 GDI(Gasoline Direct Injection)의 듀얼 분사로 인한 가속 천이 소음, 가솔린 터보차저 소음, 디젤 엔진에서의 분사변수 캘리브레이션으로 인해 악화되는 연소음에 대한 원인 및 개선방향을 제시하였다. 이러한 소음들은 고주파 소음으로 운전자에게 거친 청감을 유발하기 때문에 적절한 NVH 대책으로 저감시키는 노력이 반드시 필요하다.

디젤엔진 연료계통의 분사특성에 관한 연구 (A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

가솔린 직접분사용 다공형 인젝터의 분무특성에 관한 실험적 연구 (Experimental Study on Spray Characteristics of Gasoline Direct Injection Multi-hole Injector)

  • 이상인;박성영
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2054-2060
    • /
    • 2011
  • 본 연구의 목적은 경제적이고, 친환경적인 가솔린 직접 분사 인젝터의 분무특성을 연구하는 것에 있다. 분무도달거리, 분무각 그리고 혼합기 형성과 같은 인젝터의 특성을 가시화 실험을 통하여 측정하였다. 특히 분무압력과 분위기압력이 분무 침투거리와 분무각에 미치는 영향을 분석하였다. 가시화 실험을 위하여 정적 연소실과 연료 공급장치를 제작하였다. 초고속 카메라와 LED광원을 이용하여 분무형상을 촬영하였고, 촬영된 영상으로 분무 특성을 분석하였다. 연소실내의 분위기압력이 감소하고, 연료의 분무압력이 증가할수록 도달거리는 증가하였다. 분위기압력과 분무압력에 대해 분무각의 변화는 미소하지만, 분위기압력이 분무각에 더 큰 영향을 미치고 있다.

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.