• Title/Summary/Keyword: High-pressure experiment

Search Result 985, Processing Time 0.032 seconds

The Deposition of $SnO_2$ Films by Spray Pyrolysis (분무열분해법에 의한 $SnO_2$ 박막의 증착)

  • Kim, Tae-Heui
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 1995
  • The influence of deposition parameters on the deposition of $SnO_2$ thin films by spray pyrolysis has been studied. In the case of spray solution with tile concentration of 0.01M, at low deposition temperature the deposition was controlled by surface reaction and portion controlled by mass transfer is increased with increasing deposition temperature to $400^{\circ}C$. Above $400^{\circ}C$, the deposition is controlled by mass transfer at low spray pressure, and by surface reaction at high spray pressure. As the concentration of spray solution increased the deposition rate increased, and in this experiment the deposition depends on the Rideal-Eley mechanism. The deposition rate increased with increasing substrate temperature up to $400^{\circ}C$ and then decreased due to homogeneous nucleation. The thickness of the deposit increased with increasing spray duration, and the adhesion between substrate and deposit was formed physically.

  • PDF

Investigation of the Thermal Performance of a Vertical Two-Phase Closed Thermosyphon as a Passive Cooling System for a Nuclear Reactor Spent Fuel Storage Pool

  • Kusuma, Mukhsinun Hadi;Putra, Nandy;Antariksawan, Anhar Riza;Susyadi, Susyadi;Imawan, Ficky Augusta
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.476-483
    • /
    • 2017
  • The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of $0.22^{\circ}C/W$, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

Comparison of Commercial Bralette's Functions through Trial Wearing Experiments (착용실험을 통한 시판 브라렛의 기능 비교)

  • Kim, Seungyeon;Yang, Yerin;Jung, Jinoe;Han, Hyunsook
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.624-633
    • /
    • 2021
  • This study was intended to compare the comfort of wearing each type of commercially available bralette. The trial wearing experiment was conducted on five women in their 20s who wear an average Korean bra size of 70A. The experimental bralettes were of four types: a bralette with both hooks and pads and a bralette without both, a bralette with hooks but no pads, and a bralette with pads but no hooks. The wearing test results are as follows. First, in terms of functional satisfaction, the padded bralette provided the greatest satisfaction in supporting the chest from the bottom up and bringing it to the center, and the bralette without the pad provided the least satisfaction. In addition, the level of convenience of attaching/detaching was about twice as high in the bralette with hooks than those without hooks. Chest compression was found to be greater in bralettes without hooks than in those with hooks. In terms of the pressure on the shoulder strap and on the lower chest band, it was found that bralettes with hooks had a greater sense of pressure than those without. In the appearance characteristics test, the unpadded bralettes scored higher than the padded one in the matter of feeling embarrassed, because in unpadded bralettes, the nipples were exposed underneath the clothes . This study is meaningful in classifying the design of the bralette and evaluating the fit for each design in the absence of prior research on the bralette.

Crucible Cover of Multilayer Porous Hemisphere for Cd Distillation

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Kim, S.H.;Lee, S.J.;Hur, J.M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.05a
    • /
    • pp.57-57
    • /
    • 2018
  • The electrorefining process is generally composed of two recovery steps in pyroprocessing - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The liquid cathode processing is necessary to separate cadmium from the actinide elements since the actinide deposits are dissolved or precipitated in a liquid cathode. Distillation process was employed for the cathode processing. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. In this study, a multi-layer porous round cover was proposed and examined to develop a splatter shield for the Cd distillation crucible. Cadmium vapor can be released through the holes of the shield, whereas liquid drops can be collected in the multiple hemisphere. The collected drops flow on the round surface of the cover and flow down into the crucible. The crucible cover was fabricated and tested in the Cd distiller. The cover was made with three stainless steel round plates with a diameter of 33.50 mm. The distance between the hemispheres and the diameter of the holes are 10 and 1 mm, respectively. About 40 grams of Cd and about 4 grams of Bi was distilled at a reduced pressure for two hours at $470^{\circ}C$. After the Cd distillation experiment, cadmium was not detected and more than 90 % of Bi remained in the ICP-OES analysis. Therefore the crucible cover can be a candidate for the splatter shield of the Cd distillation crucible. Further development of the crucible cover is necessary for the decision of the optimum cover geometry and the operating conditions of the Cd distiller.

  • PDF

The Effect of Small-Scale Chemistry (SSC) Lab Program with Respect to High School Students' Extroversions and Introversions (고등학생의 내.외향성에 따른 SSC(Small-Scale Chemistry) 실험 수업의 효과)

  • Yoo, Mi-Hyun;Kim, Mi-Young;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.2
    • /
    • pp.179-192
    • /
    • 2009
  • The purpose of this study was to examine the effects of Small-Scale Chemistry (below SSC) Lab Program with respect to students' extroversions and introversions. For this study, an SSC Lab Program was developed on the basis of analyzing the chemistry part of the high school science textbook in the 7th curriculum. The experimental group received SSC experiment lessons, and the comparison group received traditional experiment lessons based on textbook for 5 class periods. Afterwards, students were grouped into extrovert and introvert according to their personality test scores, the differences between the two groups were investigated using 2-way ANCOVA. Prior to the instructions, three test regarding the scientific attitude and academic self-efficacy were administered. After the instructions, the scientific attitude, academic self-efficacy, and students' perceptions on SSC Lab Program were examined. The scores in mid-term and end-of-term science exams were used as pre-test and post-test science achievement scores, respectively. Two-way ANCOVA results revealed that there were effects in the score of the academic achievement score, but there was no interactive effect between extroversion/introversion and treatment. In addition, a significant interactive effect was found in the scientific attitude, but there was no significant main effect. It was interpreted that extrovert students had many opportunities in SSC experiment classes and were able to experiment with initiative, but introverts would feel the responsibility and the pressure owing to the small group experiment. There were no main and interactive effects in the score of the academic self-efficacy test. Survey of students' perceptions on SSC Lab Program revealed that both over 90% extrovert and introvert students showed very positive perceptions in 'three-membered small group composition,' 'understanding,' and 'convenience' items. It was found to be a very different perception between extrovert and introvert students in 'comparing result with other students' item.

Characterization of resistance spot welded Al5052/DP590 dissimilar materials and processing optimization (저항점용접된 Al5052/DP590 이종소재의 특성평가 및 공정의 최적화)

  • Jo, Beom-Ji;Kim, Ji-Sun;Yoo, Hyo-Sang;Kim, In-Ju;Lee, Seong-Hui;Kim, Young-Gon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • IRW(Inverter Resistance Welding) process and DSW(Delta-spot welding) process for dissimilar materials of DP590 and Al5052 were performed to evaluate the welding quality and mechanical properties. IRW experiment was carried out with changing the welding current. The other welding parameters such as pressure force, weld time, squeezing time and holding time were fixed. On the anther hand, DSW experiment was performed using the process tape at welding current of 11.5kA. The other conditions were same as IRW conditions. The various testes such as shear tensile strength, nugget diameters, EDS, SEM and cross-sectional observation for weld zone was performed. As a result, IMC(Inter Metallic Compound) thickness at 11.5kA was thinner than those of 9.5kA and 10.5kA conditions. In addition, thined IMC layer was observed when high electric current apply to the materials(DP590 and Al5052) in a short time throught dissimilar resistance spot welding controling welding conditions. The relationship between the thickeness of IMC and current intensity was after discussed.

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Experiment Study on Field Applicability of Siphon as a Intake Facility of Agricultural Reservoir for Disaster Prevention (재해대비 농업용저수지 취수시설로서 사이폰의 현장적용성에 관한 실험적 연구)

  • Yang, Young Jin;Lee, Tae Ho;Oh, Sue Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Most of the intake facilities of small agricultural reservoirs are conduits and they are regarded as serious defects due to the structural weakness that penetrates the body of the dam, and countermeasures are needed. This study suggests the application method of siphon type water intake facility by hydraulic model test and physical scale model test of siphon type water intake facility which has high safety and easy maintenance. Experimental results show that sufficient flow rate can be secured for the purpose of intaking water according to the differential head between the reservoir and the discharge part, and the flow rate can be controlled by the valve. The negative pressure was -31.5 kPa, and vibration and noise did not occur during the operation of the siphon. The maximum flow velocity in the discharge outlet was 1.11 m/s which meets the criterion for irrigation canals. Therefore, scour risk would be very low. As a result of the inflow distribution experiment, even if the inflow part is separated by only about 0.8 m, the flow velocity is remarkably decreased, so that the clogging by debris would not appear. When the pump was operated only once for the first time and the inside of the siphon was filled with water, continuous operation was possible by only valve operation. The results of this study are expected to be used for the design guidelines of the water intake facilities and improve safety and maintenance convenience of agricultural reservoirs.

The Effect of Adaptation to Sound Intensity on the Neural Metabolism in Auditory Pathway: Small Animal PET Study (소동물 [F-18]FDG 양전자단층촬영 기법을 이용한 청각신경에서의 소리크기에 대한 적응효과 연구)

  • Jang, Dong-Pyo
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Although sound intensity is considered as one of important factors in auditory processing, its neural mechanism in auditory neurons with limited dynamic range of firing rates is still unclear. In this study, we examined the effect of sound intensity adaptation on the change of glucose metabolism in a rat brain using [F-18] micro positron emission tomography (PET) neuroimaging technique. In the experiment, broadband white noise sound was given for 30 minutes after the [F-18]FDG injection in order to explore the functional adaptation of rat brain into the sound intensity levels. Nine rats were scanned with four different sound intensity levels: 40 dB, 60 dB, 80 dB, 100 dB sound pressure level (SPL) for four weeks. When glucose uptake during the adaptation of a high intensity sound level (100 dB SPL) was compared with that during adaptation to a low intensity level (40 dB SPL) in the experiment, the former induced a greater uptake at bilateral cochlear nucleus, superior olivary complexes and inferior colliculi in the auditory pathway. Expectedly, the metabolic activity in those areas linearly increased as the sound intensity level increased. In contrast, significant decrease interestingly occurred in the bilateral auditory cortices: The activities of auditory cortex proportionally decreased with higher sound intensities. It may reflect that the auditory cortex actively down-regulates neural activities when the sound gets louder.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.