• Title/Summary/Keyword: High-power lithium-ion battery

Search Result 106, Processing Time 0.024 seconds

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships (친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향)

  • Kim, Sehwan;Choi, Gilsu;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.556-564
    • /
    • 2021
  • This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.

A High Efficiency Zero Voltage/Zero Current Transition Converter for Series Connected Battery Cell Equalization (영전압/영전류 스위칭을 이용한 고효율의 직렬 접속 배터리 전압 밸런싱 방법)

  • Kim, Tae-hoon;Park, Nam-Ju;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.26-27
    • /
    • 2011
  • This paper focuses on the zero-voltage/zero current transition voltage equalization circuit for the series connected battery cell. By adding auxiliary resonant cells at the main switching devices such as MOSFET or IGBT, zero current switching is achieved and turned off loss of switching elements is eliminated and by the voltage/second balancing of the inductor, zero voltage switching can be applied to switching element. Transformer coupling between battery cells and ZVZCT (Zero Voltage Zero Current Transition) switching method allow the fast balancing speed and high frequency operation, which reduces the size and weight of the circuit. The validity of the battery equalization is further verified using simulation involving four lithium-ion battery cell models.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok;Wontae Lee;Hyunbeom Lee;Sangbin Park;Chanyou Chung;Sunhyun Hwang;Won-Sub Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-66
    • /
    • 2024
  • Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

A Study on the Application Cases Analysis of ESS(Energy Storage System) to Electric Power System (에너지 저장 시스템의 전력계통 적용 사례 분석)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Because a progressive tax of home electricity rates is charged and a continuous rise of industrial electricity rates is expected in order to solve the global warming, the high oil prices and the serious power shortage problem, the efforts to apply the energy storage systems which can significantly improve the energy usage efficiency to the smart grid are trying newly. In this study, characteristics of the secondary battery which can be used as energy storage devices, the structure and operation principle of a lithium-ion battery, and the concept of energy storage systems are research and analyzed. In addition, in this paper, the base technologies which are required to apply to the energy storage system to electric power system are established by studying about installation location and application methodology of energy storage system to electric power system.

Design of ARIMA-Kalman Hybrid Model for SOH Prediction of High-Power Lithium-ion Battery (고출력 리튬이온 배터리의 SOH 예측을 위한 ARIMA-Kalman 하이브리드 모델의 설계)

  • Kim, Seungwoo;Lee, Pyeong-Yeon;Han, Dongho;Lee, Seong-Jun;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.210-211
    • /
    • 2019
  • 배터리의 안정적인 운영과 관리를 위해서 배터리의 SOH 예측은 매우 중요한 과제이다. 본 논문에서는 배터리 팩의 SOH를 예측하기 위한 ARIMA-Kalman 기반의 최적화된 하이브리드 방법을 소개한다.

  • PDF

Electro-thermal interpretation and experimental validation of high power 18650 lithium ion battery (고출력 18650 리튬이온 배터리의 Electro-thermal 해석 및 실험 검증)

  • Kang, Tae-Woo;Kang, Deok-Hun;Lee, Pyeong-Yeon;Yu, Ki-Soo;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.137-138
    • /
    • 2018
  • 본 논문은 단일 배터리의 발열량 추정을 위한 전기-열적 해석을 수행하였다. 셀의 물리적 특성, SOC별 저항에 중점을 두어 발열량 추정을 하였다. 실험과 시뮬레이션을 비교하여 제시한 모델과 발열 저항의 의미를 확립 및 검증하며 단일 배터리의 방전구간 발열량을 추정하였다.

  • PDF

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Multiple linear regression model-based voltage imbalance estimation for high-power series battery pack (다중선형회귀모델 기반 고출력 직렬 배터리 팩의 전압 불균형 추정)

  • Kim, Seung-Woo;Lee, Pyeong-Yeon;Han, Dong-Ho;Kim, Jong-hoon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, the electrical characteristics with various C-rates are tested with a high power series battery pack comprised of 18650 cylindrical nickel cobalt aluminum(NCA) lithium-ion battery. The electrical characteristics of discharge capacity test with 14S1P battery pack and electric vehicle (EV) cycle test with 4S1P battery pack are compared and analyzed by the various of C-rates. Multiple linear regression is used to estimate voltage imbalance of 14S1P and 4S1P battery packs with various C-rates based on experimental data. The estimation accuracy is evaluated by root mean square error(RMSE) to validate multiple linear regression. The result of this paper is contributed that to use for estimating the voltage imbalance of discharge capacity test with 14S1P battery pack using multiple linear regression better than to use the voltage imbalance of EV cycle with 4S1P battery pack.