• Title/Summary/Keyword: High-performance interconnection

Search Result 103, Processing Time 0.028 seconds

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

Study on Shingled String Interconnection for High Power Solar Module (고출력 슁글드 태양광 모듈 제작을 위한 스트링 연결에 관한 연구)

  • Kim, Juhwi;Kim, Junghoon;Jeong, Chaehwan;Choi, Wonyoung;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.449-453
    • /
    • 2021
  • Interest and investment in renewable energy have increased worldwide, highlighting the need for renewable energy. Solar energy was the most promising energy of all renewable energy sources, and it has the highest investment value. Because photovoltaics require a certain amount of area for installation, high density and high output performance are required. Shingled module is a promising technology in that they are featured by higher density and higher output compared to the conventional modules. Shingled technology uses a laser scribing to divide solar cells that are to be bonded with electrically conductive adhesive (ECA) to produce and connect strings, which has a higher output in the same area than the conventional modules. In the process of producing solar modules, metal ribbons are used to interconnect cells, but they are also needed for string connections in shingled solar cells. Accordingly, in this study, we researched the interconnection that best suits the connector that joins the string to the string. The module outputs produced under the conditions of the string interconnection were compared and analyzed.

Medium Access Control Protocol for Interconnection Network of Mobile System (이동통신 시스템의 상호연결망을 위한 접근제어 프로토콜)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.95-108
    • /
    • 1999
  • The CDMA mobile system consists of several subsystems and each subsystem has many processing elements that handle voice messages and control messages for performing CDMA call processing functions through CDMA Interconnection Network(CIN). For assuring a high throughput and a short delay in the CIN, an efficient medium access control protocol should be provided. In this paper, we propose a new access control protocol of CIN for providing real time communications in CDMA mobile system. Also, we evaluate the delay performance of the proposed access control protocol and compare it with that of the existing access control protocol. Through a set of numerical examples, we show that our proposed protocol provides a better delay performance than the existing protocol.

  • PDF

A Simple Approximation Method for Analyzing MIN Based Switching Architecture (MIN기반 교환기 구조를 분석하기 위한 간단한 근사화 방법 연구)

  • Choe, Won-Je;Chu, Hyeon-Seung;Mun, Yeong-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1941-1948
    • /
    • 2000
  • Multistage interconnection networks (MINs) have been recognized as an efficient interconnection network for high-performance computer systems and also have been recently identified to be effective for a switching fabric of new communication structures - gigabit ethernet switch, terabit router, and ATM (asynchronous transfer mode). While lots of models analyzing the performance of MINs have been proposed, they are either inaccurate or, even if accurate, very complex for the analysis. In this paper, we propose an extremely simple mode for evaluating the multibuffered MIN with small clock cycles based on the approximation approach. Comprehensive computer simulation shows that the proposed model is very accurate in terms of the throughput and mean delay. Furthermore, it significantly reduces the computing overhead due to its simplicity.

  • PDF

Transputer-based Pyramidal Parallel Array Computer(TPPAC) architecture (Prelimineary Version) (트랜스퓨터를 사용한 피라미드형 병렬 어레이 컴퓨터 (TPPAC) 구조)

  • Jeong, Chang-Sung;Jeong, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.647-650
    • /
    • 1988
  • This paper proposes and sketches out a new parallel architecture of transputer-based pyramidal parallel array computer (TPPAC) used to process computationally intensive problems for geometric processing applications such as computer vision, image processing etc. It explores how efficiently the pyramid computer architecture is designed using transputer chips, and poses a new interconnection scheme for TPPAC without using additional transputers.

  • PDF

Performance Analysis of 800Gb/s ATM Switching MCM (800Gb/s ATM 스위칭 MCM의 성능분석)

  • Jung, Un-Suk;Kim, Hoon;Park, Kwang-Chae
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.155-158
    • /
    • 2001
  • A 640Gb/s high-speed ATM switching system that is based on the technologies of advanced MCM, 0.25um CMOS and optical WDM interconnection is fabricated for future N-ISDN services. A 40 layer, 160mm$\times$114mm ceramic MCM realizes the basic ATM switch module with 80Gbps throughput. The basic unit ATM switch module with 80Gb/s throughput. The basic unit ATM switch MCM consists of in 8 chip advanced 0.25um CMOS VLSI and 32 chip I/O Bipolar VLSIs. The MCM employs an 40 layer, very thin layer ceramic MCM and a uniquely structured closed loop type liquid colling system is adopted to cope with the MCM's high-power dissipation of 230w. The MCM is Mounted on a 32cm$\times$50cm mother board. A three stage ATM switch is realized by optical WDM interconnection between the high-performance MCM.

  • PDF

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

Design and Implementation of Bus for 32-bit RISC Microprocessor (32-bit RISC마이크로프로세서를 위한 버스 설계 및 구현)

  • 양동훈;곽승호;이문기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.333-336
    • /
    • 2002
  • This paper purpose design and implementation of system bus for the effective interconnection between peripheral device and 32-bit microprocessor. The designed system bus support general bus protocol. Also, it is optimized for 32-bit microprocessor. It is divided into two system. high performance system bus and Peripheral system bus.

  • PDF

Hierarchical Ring Extension of NUMA Systems using Snooping Protocol (스누핑 프로토콜을 사용하는 NUMA 시스템의 계층적 링 구조로의 확장)

  • Seong, Hyeon-Jung;Kim, Hyeong-Ho;Jang, Seong-Tae;Jeon, Ju-Sik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1305-1317
    • /
    • 1999
  • NUMA 구조는 원격 메모리에 대한 접근이 불가피한 구조적 특성 때문에 상호 연결망이 성능을 좌우하는 큰 변수가 된다. 기존에 대중적으로 사용되던 버스는 물리적 확장성 및 대역폭에서 대규모 시스템을 구성하는 데 한계를 보인다. 이를 대체하는 고속의 지점간 링크를 사용한 링 구조는 버스가 가지는 확장성 및 대역폭의 한계라는 단점을 개선하였으나, 많은 클러스터가 연결되는 경우에는 전송 지연시간이 증가하는 문제점을 가지고 있다. 본 논문에서는 스누핑 프로토콜이 적용된 링 구조에서 클러스터 개수 증가에 따른 지연시간 증가의 문제점을 보완하기 위해 계층적 링 구조로의 확장을 제안하고, 이 구조에 효과적인 캐쉬 일관성 프로토콜을 설계하였다. 전역 링과 지역 링을 연결하는 브리지는 캐쉬 프로토콜을 관리하며 이 프로토콜에 의해 지역 링의 부하를 줄일 수 있도록 트랜잭션을 필터링하는 역할도 담당함으로써 시스템의 성능을 향상시킨다. probability-driven 시뮬레이터를 통해 계층적 링 구조가 시스템의 성능 및 링 이용률에 미치는 영향을 알아본다. Abstract Since NUMA architecture has to access remote memory, interconnection network performance determines performance of NUMA architecture. Bus, which has been used as popular interconnection network of NUMA, has a limit to build a large-scale system because of limited physical scalability and bandwidth. Ring interconnection network, composed of high-speed point-to-point link, made up for bus's defects of scalability and bandwidth. But, it also has problem of increasing delay as the number of clusters is increased. In this paper, we propose a hierarchical expansion of snoop-based ring architecture in order to overcome ring's defects of increasing delay. And we also design an efficient cache coherence protocol adopted to this architecture. Bridge, which connects local ring and global ring, maintains cache coherence protocol and does snoop-filtering which reduces local ring and cluster bus utilization. Therefore bridge can improve performance of this system. We analyze effects of hierarchical architecture on the performance of system and utilization of point-to-point links using probability-driven simulator.

Thermo-mechanical Behavior Characteristic Analysis of $B^2it$(Buried Bump Interconnection Technology) in PCB(Printed Circuit Board) (인쇄회로기판 $B^2it$(Buried Bump Interconnection Technology) 구조의 열적-기계적 거동특성 해석)

  • Cho, Seung-Hyun;Chang, Tae-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.43-50
    • /
    • 2009
  • Although thin PCBs(Printed Circuit Boards) have recently been required for high density interconnection, high electrical performance, and low manufacturing cost, the utilization of thin PCBs is severely limited by warpage and reliability issues. Warpage of the thin PCB leads to failure in solder-joints and chip. The $B^2it$(Buried Bump Interconnection Technology) for PCB has been developed to achieve a competitive manufacturing price. In this study, chip temperature, package warpage, chip stress and solder-joints stress characteristics of the PCB prepared with $B^2it$ process have been calculated using thermo-mechanical coupled analysis by the FEM(Finite Element Method). FEM computation was carried out with the variations in bump shapes and kinds of materials under 1.5W power of chip and constant convection heat transfer. The results show that chip temperature distribution reached more quickly steady-state status with PCB prepared with $B^2it$ process than PCB prepared with conventional via interconnection structure. Although $B^2it$ structures are effective on low package warpage and chip stress, with high strength bump materials arc disadvantage for low stress of solder-joints. Therefore, it is recommended that optimized bump shapes and materials in PCB design should be considered in terms of reliability characteristics in the packaging level.

  • PDF