• Title/Summary/Keyword: High-frequency radio communication

Search Result 251, Processing Time 0.028 seconds

Automatic Frequency Conversion Algorithm for Vehicle Radio (차량 라디오 주파수 자동변환 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.939-944
    • /
    • 2014
  • Traffic accidents caused by the attention dispersion are increasing and the behavior of the attention dispersion affects the front-observing rate, road keeping ability, and reaction time for a dangerous situation. Many drivers listen to a radio broadcast and they have to change the frequency for continuously listening a radio broadcast of the specific broadcasting station in case of crossing a boundary of the particular area. In this situation, the possibility of a car accident increases, because the attention dispersion of a driver might be occurred. Especially, the risk of a car accident caused by changing the frequency of a radio is more serious in the highway, due to the high speed of a vehicle. In order to reduce the risk of a car accident caused by handling a radio during driving car, in this paper, we propose an automatic frequency conversion algorithm for vehicle radio, which saves normal system frequencies of primary broadcasting stations in a database and determines new frequency of the changed area using the location information obtained from a navigation system in a boundary of the specific area. After determining new frequency, the proposed algorithm selects a frequency with better receiving rate comparing signal-to-noise ratios (SNRs) of two signals corresponding previous and new frequencies.

Fabrication of Micromachined On-chip High Ratio Air Core Solenoid Inductor (MEMS에 의한 On-chip 고종횡비 Air Core Solenoid 인덕터의 제작)

  • Lee Jeong-Bong;Kim Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.780-784
    • /
    • 2006
  • We present high aspect ratio air-core solenoid inductors with $100{\mu}m\;and\;200{\mu}m$ tall via structures on Pyrex wafer. The effect of various parameters such as different number of turns, via heights, pitch distance between turns on inductor's radio frequency (RF) characteristics have been studied. The highest Q factor we obtained from various solenoid inductors is 72.8 at 9.7 GHz, which was produced by a 3-turn inductor.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

Reconfigurable MMIC VCO Design for Wireless Ubiquitous Communications (무선 유비쿼터스 통신을 위한 재구성 MMIC VCO 설계)

  • Kang, Jeong-Jin;Kim, Wan-sik;Lee, Dong-Joon;Rothwell, Edward J
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.67-73
    • /
    • 2008
  • Reconfigurable radio technology is needed to reconstruct frequency and modem functionality, which can be different within various regions. In addition, it makes it possible for a single mobile handset to support various standards of wireless communication, and thus plays a key role inmobile convergence. A MMIC VCO(Monolithic Microwave Integrated Circuit Voltage Controlled Oscillator) has been developed to produce high power and wide bandwidth that adapts the Clapp-Gouriet type oscillator for series feedback. We were fabricated based on the 0.15um pHEMT from TRW. The MMIC VCO was connected to an alumina substrate on the carrier for testing. This MMIC VCO module shows good performance when compared with existing VCOs. Futhermore, it has potential as a reconfigurable MMIC VCO for ubiquitous communications such as LMDS (Local Multipoint Distribution Service), VSAT, Point to Point Radio and SATCOM.

  • PDF

Synchronization for IR-UWB System Using a Switching Phase Detector-Based Impulse Phase-Locked Loop

  • Zheng, Lin;Liu, Zhenghong;Wang, Mei
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.175-183
    • /
    • 2012
  • Conventional synchronization algorithms for impulse radio require high-speed sampling and a precise local clock. Here, a phase-locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one-tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high-speed ultra-wideband transceiver shows its feasibility, low complexity, and high precision.

Domestic Radio Waves Propagate Management and Control Systems Investigate the System Status (전파관리방식의 변화에 대비한 제도 개선 방안에 대한 조사)

  • Choi, Woo-Jin;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1145-1154
    • /
    • 2018
  • In order to prevent interference and interference of the frequency, it is required to convert the regulatory standard into the center of the radiation power radiated to the actual public. Since the radiation power regulation is related to general radio management such as technical standards, permits, and inspections, it is gradually introduced in consideration of applicability and urgency, and the radiation power related laws of major countries And a method of controlling the output of the radio equipment such as measurement, inspection, and authentication. In Korea, the proportion of antenna power supply is high, and in Europe, radiation power is high. Since the number of radio stations will increase and diversify in the future, institutional improvement should be made so that it can be measured in parallel with the radiocommunication infrastructure of the space manager. In order to convert to the radiative power management system, the system for the related radio system needs(Technical standards, certification, inspection of radio stations, post-management, etc.) to be improved.

Characterization of iron oxide scale films using radio frequency waves (전파를 이용한 철산화물 스케일 박막 특성 연구)

  • Muhn, Sung-Jin;Shin, Dong-Sik;Yun, Him-Chan;Park, Wee-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • This paper deals with the analysis of characteristics of the scale non-uniformly formed on the surface of the steel during the steel production processes. The steel made at the high temperature contacts with the oxygen in the air, so forms the scale immediately. The scale has a role to protect the surface of the steel product as a oxide-layer, but the scale formed non-uniformly spoils the exterior of the steel product and occurs the problems about the next processes. There is a pickling process to remove the scale of the steel products, but the real situation is that the pickling process is not also based on the analysis of the characteristics of the scale. Therefore, this paper describe the procedures of the analysis of the scale more effectively using the radio-frequency wave. Using the radio-frequency wave, this paper introduce the experimentations to analyze the distributions of scale, the junction characteristics between the surface of steel and scale and the distributions of scale on the produced steel coil. Also, according to the simple simulations, this paper proves the proprieties about the above contents.

  • PDF

Future Radio Technology (미래 전파기술)

  • Kim, B.C.;Park, S.T.;Kang, K.O.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.66-72
    • /
    • 2017
  • The frequency range of a radio wave is from 3kHz to 300GHz, and radio technologies use this range to improve the quality of human lives. Radio technologies have entered a new phase of communication. The core infrastructure used as the basis for technologies leading the fourth industrial evolution, such as artificial intelligence, the Internet of Things, autonomous cars/drones, augmented reality, robots, and remote medical diagnoses, is the 5G network. The 5G network enables transmitting and receiving large amounts of data at very high speed. In particular, application technologies with artificial intelligence have been studied, including radar, wireless charging, electromagnetic devices and their effects on humans, EMI/EMC, and microwave imaging. In this study, we present a future radio technology that is needed to prepare for the upcoming industrial revolution and digital transformation.

A frequency Domain based High Resolution Positioning Method using Low Rate ADC in LR-WPAN (LR-WPAN에서 저속 ADC를 이용한 주파수 영역상의 고해상 무선 측위 기법)

  • Lee, Won-Cheol;Park, Woon-Yong;Hong, Yun-Gi;Choi, Sung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.145-152
    • /
    • 2009
  • Ultra-wideband communication systems for impulse radio have merits that are possible for either high resolution ranging system or radio determination. Conventionally, in order to accomplish these functions, the rapid analog to digital convertor (ADC) is necessary to apply radio determination system operating in time domain. However, considering that low rate - wireless personal area network (LR-WPAN) aims to low-cost hardware implementation, the expensive ADC converting GHz sampling per second is not appropriate. So, this paper introduces the high resolution ranging system operating in frequency domain with using low sampling rate ADC, and a new non-coherent ranging scheme utilizing analog Frequency Modulation (FM) mode for the frequency domain transformation. To verify the superiority of the proposed ranging algorithm working in frequency domain, the suggested IEEE 802.15.4a TG channel model is used to exploit affirmative features of the proposed algorithm with conducting the simulation results.

Unequal Power Divider using Parallel Connection Transmission Line (병렬 연결된 전송선로를 이용한 비대칭 전력 분배기)

  • Kwon, Sang-Keun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.202-207
    • /
    • 2013
  • In this paper, a high dividing ratio unequal power divider using parallel connection transmission line is presented. Because a very low impedance transmission line can't implement a microstrip technology, this can fabricate a parallel connection transmission line with high impedance. When we design a high dividing ratio divider, we need the very low impedance line. The parallel connection transmission line could be implemented to obtain a low impedance line characteristic. To validity this approach, we are implemented a 10:1 unequal divider at center frequency 1 GHz. The performances of power divider agree with simulation results.