• Title/Summary/Keyword: High-fat diet mice

Search Result 682, Processing Time 0.022 seconds

The Effect of Aerobic Exercise Training Versus Resveratrol Supplementation on Mitochondrial Biogenesis in Skeletal Muscle of High-fat Diet-induced Obese Mice (고지방식이로 유도된 비만 쥐의 골격근에서 유산소 운동 훈련 또는 레스베라트롤 투여가 미토콘드리아 생합성에 미치는 영향)

  • Kim, Kyung-Il;An, Sang-Min;Park, Hee-Geun;Lee, Wang-Lok
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.837-845
    • /
    • 2019
  • The purpose of this study was to analyze the effects of aerobic exercise and resveratrol supplementation on mitochondrial biogenesis in skeletal muscle of high-fat diet-induced obese mice. In this study, 4-wk-old C57BL/6 male mice were divided into four groups, with 10 animals in each group: a normal diet group (NC), high-fat diet group (HC), high-fat diet group with resveratrol supplementation (HRe), and high-fat diet GROUP with exercise (HE). Aerobic exercise was performed on a treadmill for 40~60 min/d at 10~14 m/min, 0% grade, 4 d/wk for 16 wk. Resveratrol (25 mg/kg bodyweight) was administrated once a day, 4 d/wk for 16 wk. There was a significance difference in COX-IV mRNA expression in the NC group versus that in the HC group (p<0.05). The expression of the SIRT-3, PGC-1a, and COX-IV mRNA genes in the HE group increased significantly as compared with the expression of these genes in the HC and HRe groups (p<0.05). These results indicated that high- fat diet-induced obesity did not affect mitochondria biogenesis gene expression in skeletal muscle. In contrast, aerobic exercise training increased the expression of mitochondria biogenesis gene expression in skeletal muscle in high-fat diet-induced obese mice. These findings suggested that aerobic exercise but not resveratrol supplementation had a positive effect on mitochondrial biogenesis in skeletal muscle in high-fat diet-induced obese mice.

Effect of a Pholiota adiposa Extract on Fat Mass in Hyperlipidemic Mice

  • Cho, Soo-Muk;Lee, Young-Min;Lee, Dae-Hyoung;Chun, Hye-Kyung;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.236-239
    • /
    • 2006
  • The purpose of this study was to investigate the effect of a Pholiota adiposa extract on fat mass in hyperlipidemic mice fed on a high-fat diet. The water extracts from P. adiposa (ASI 24018) were not affected in the total triglyceride contents and epididymal fat mass in mice fed on a high-fat diet, but the retroperitoneal fat mass decreased significantly. This result suggests that the P. adiposa extract may be a potential candidate for use as a functional food that can act as a prophylactic against hyperlipidemia. However, the P. adiposa extract showed no effect in the total triglyceride contents and epididymal fat mass.

Single-Cell Hemoprotein Diet Changes Adipose Tissue Distributions and Re-Shapes Gut Microbiota in High-Fat Diet-Induced Obese Mice

  • Seungki Lee;Ahyoung Choi;Kyung-Hoon Park;Youngjin Cho;Hyunjin Yoon;Pil Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1648-1656
    • /
    • 2023
  • We have previously observed that feeding with single-cell hemoprotein (heme-SCP) in dogs (1 g/day for 6 days) and broiler chickens (1 ppm for 32 days) increased the proportion of lactic acid bacteria in the gut while reducing their body weights by approximately 1~2%. To define the roles of heme-SCP in modulating body weight and gut microbiota, obese C57BL/6N mice were administered varied heme-SCP concentrations (0, 0.05, and 0.5% heme-SCP in high fat diet) for 28 days. The heme-SCP diet seemed to restrain weight gain till day 14, but the mice gained weight again later, showing no significant differences in weight. However, the heme-SCP-fed mice had stiffer and oilier bodies compared with those of the control mice, which had flabby bodies and dull coats. When mice were dissected at day 10, the obese mice fed with heme-SCP exhibited a reduction in subcutaneous fat with an increase in muscle mass. The effect of heme-SCP on the obesity-associated dyslipidemia tended to be corroborated by the blood parameters (triglyceride, total cholesterol, and C-reactive protein) at day 10, though the correlation was not clear at day 28. Notably, the heme-SCP diet altered gut microbiota, leading to the proliferation of known anti-obesity biomarkers such as Akkermansia, Alistipes, Oscillibacter, Ruminococcus, Roseburia, and Faecalibacterium. This study suggests the potential of heme-SCP as an anti-obesity supplement, which modulates serum biochemistry and gut microbiota in high-fat diet-induced obese mice.

Preventive Effects of Whole Grain Cereals on Sarcopenic Obesity in High-fat Diet-induced Obese Mice (고지방식이 동물모델에서 통곡물 시리얼의 근감소성 비만 예방 효과)

  • Kim, Mi-Bo;Lee, Sein;Kim, Changhee;Hwang, Jae-Kwan
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.358-365
    • /
    • 2018
  • Whole grain cereal (WGC)-rich diets provide macronutrients that are important for the regulation of energy metabolism. The current study evaluated whether WGCs had a preventive effect on sarcopenic obesity in high-fat diet (HFD)-induced obese mice. C57BL/6N mice were fed a normal diet (ND), ND+WGC, HFD, and HFD+WGC for 12 weeks. WGCs significantly reduced body weight gain, food efficiency ratio, fat mass, and adipocyte size in HFD-induced obese mice. WGCs attenuated HFD-induced nonalcoholic fatty liver disease by decreasing liver weight and hepatic fat accumulation. In addition, WGCs increased muscle strength and muscle mass in HFD-induced obese mice as well as in ND mice. Taken together, WGCs can be employed as functional food materials for the prevention of sarcopenic obesity by inhibiting fat accumulation and increasing muscle mass.

Effects of High Molecular Weight Water-Soluble Chitosan can in 7tro Fertilization and Ovulation in Mice Fed a High-Fat Diet

  • Choo, Young-Kug;Choi, Hee-Gon;Kim, Jin-Kyung;Kwak, Dong-Hoon;Cho, Jung-Ran;Kim, Ji-Yeoun;Kim, Byung-Jin;Jung, Kyu-Yong;Choi, Bong-Kyu;Shin, Min-Kyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • A high molecular ar weight water-soluble chitosan (WSC) with an average molecular weight of 300 kD and a deacethylation level of over 90% was produced using a simple multi-step-membrane separation process. It is known that WSC prevents obesity induced by a high-fat diet. Consequently, this study investigated whether or not WSC improved the ovarian dysfunction caused by obesity in mice. The mice were fed a high density protein and lipid diet for weeks, followed by the administration of WSC at 480 mg/kg body weight per day for 4 days. Thereafter, the changes in body weight, ovulation rate, in vivo and in vitro fertilization and emboryonic development were measured . WSC markedly reduced the body weight of obese mice fed with a high-fat diet, but not in mice fed with a normal diet. WSC had siginificant effects on the ovulation rate, both the in vivo and in vitro fertilization rates and embryonic development. These results indicate an improvement in the ovarian and oviduct dysfunction caused by obesity, and suggest an adjustment in the internal secretions and metabolic functions.

Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-${\gamma}$ in mice fed a high-fat diet

  • Park, Ji-Heon;Lee, Sun-Hee;Chung, Ill-Min;Park, Yong-Soon
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.322-327
    • /
    • 2012
  • This study investigated the hypothesis that a sorghum extract exerts anti-diabetic effects through a mechanism that improves insulin sensitivity via peroxisome proliferator-activated receptor gamma (PPAR-${\gamma}$) from adipose tissue. Seven C57BL/6 mice were fed an AIN-93M diet with fat consisting of 10% of total energy intake (LF) for 14 weeks, and 21 mice were fed a high-fat AIN diet with 60% of calories derived from fat (HF). From week 8, the HF diet-fed mice were orally administered either saline (HF group), 0.5% (0.5% SE group), or 1% sorghum extract (1% SE group) for 6 weeks (n = 7/group). Perirenal fat content was significantly lower in the 0.5% SE and 1% SE groups than that in the HF mice. Levels of total and low-density lipoprotein cholesterol, triglycerides, glucose, and the area under the curve for glucose were significantly lower in mice administered 0.5% SE and 1% SE than those in HF mice. Serum insulin level was significantly lower in mice administered 1% SE than that in HF mice or those given 0.5% SE. PPAR-${\gamma}$ expression was significantly higher, whereas the expression of tumor necrosis factor-${\alpha}$ was significantly lower in mice given 1% SE compared to those in the HF mice. Adiponectin expression was also significantly higher in mice given 0.5% SE and 1% SE than that in the HF mice. These results suggest that the hypoglycemic effect of SE may be related with the regulation of PPAR-${\gamma}$-mediated metabolism in this mouse model.

Cissus quadrangularis Extracts Decreases Body Fat Through Regulation of Fatty acid Synthesis in High-fat Diet-induced Obese Mice

  • Lee, Hae Jin;Lee, Dong-Ryung;Choi, Bong-Keun;Park, Sung-Bum;Jin, Ying-Yu;Yang, Seung Hwan;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • The current study investigated the anti-obesity effect of Cissus quadrangularsis extracts (CQR-300) and its molecular action mechanism on obese mice induced high-fat diet (HFD). To induce the obesity, mice were fed a HFD for 6 weeks and then fed HFD only or HFD with CQR-300 at 50 and 200 mg/kg. Then, body weight gain and white adipose tissue weights were measured. We investigated the reduction in body fat and the regulation of fatty acid synthesis was measured by dual energy X-ray absorptiometry and real-time PCR with Western blot, respectively. In vitro study, CQR-300 inhibited pancreatic lipase activity. The CQR-300 treatment was significantly decreased the body weight gain and adipocytes size as well as white adipose tissues weights in HFD-induced obese mice. Furthermore, CQR-300 reduced the body fat and fat mass with regulating of adipose tissue hormones as leptin. Treatment with 50 mg/kg CQR-300 showed effectively lower expression levels of adipogenesis/lipogenesis related genes and proteins such as CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), Sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS) in white adipose tissue (WAT) as compared with the HFD fed only mice. These results suggest that the CQR-300 has an anti-obesity effect via inhibition of lipase activity, decrease the body fat mass by regulating the adipogenesis and lipogenesis related genes and proteins in epididymal adipose tissue with evaluate body fat reduce in the HFD-induced obese mice.

Alteration in plasma chemokine profile in a high-fat diet-induced obesity mouse model (고지방식이로 비만을 유도한 생쥐에서 혈장 케모카인 발현 변화)

  • Kim, Dong-Hwan;Cho, Jeong Min;Seo, Min Joon;Lim, Ju Hyun;Bae, Hae-Rahn
    • Journal of Nutrition and Health
    • /
    • v.51 no.5
    • /
    • pp.369-378
    • /
    • 2018
  • Purpose: Obesity is associated with a dysregulation of metabolic balance and is regarded as a low grade chronic inflammation. Western-style diet and physical inactivity are leading causes of obesity. This study examined the profiles of forty plasma cytokines and chemokines at the same time in the early stages of high-fat diet-induced obesity using a mouse model. Methods: A total of 30 male CD1 mice, 12 ~ 14 weeks of age, were enrolled. The mice were fed a high-fat diet for 6 weeks to induce obesity. The plasma glucose and triglyceride concentrations were measured using a hexokinase colorimetric assay kit and a serum triglyceride determination kit, respectively. The relative levels of multiple cytokines and chemokines in the plasma were determined using a mouse cytokine array kit. Results: The mice exhibited significant weight gain after 6 weeks of a high-fat diet. The genital fat depot was enlarged along with an increase in the number and the mean size of white adipocytes as early as 4 weeks after a high-fat diet. In addition, the plasma glucose and triglyceride levels increased significantly after 4 weeks of a high-fat diet. Cytokine array analysis revealed a remarkable increase in the expression of both CXCL12 and CXCL13, whereas the proinflammatory cytokines remained low after 4 weeks of a high-fat diet. Conclusion: A significant increase in plasma levels of CXCL12 and CXCL13 was observed after 4 weeks of a high-fat diet, which might induce the migration of B lymphocytes, T lymphocytes, and monocytes from the blood to expanding adipose tissue or fat associated lymphoid clusters, playing a key role in adipose tissue remodeling and local immunity during the early stages of high-fat diet-induced obesity.

Ameliorating Effect of Mycoleptodonoides aitchisonii on High-fat Diet-induced Obese Mice

  • Lee, Mi Ra;Begum, Shahnaz;Oh, Deuk Sil;Wee, An Jin;Yun, Byung Sun;Sung, Chang Keun
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2014
  • The present study investigated the anti-obesity effects of Mycoleptodonoides aitchisonii (MA) in mice fed a high-fat (HF) diet. Two groups were fed either a normal control diet or an HF (45% kcal fat) diet for 12 weeks and three groups were fed an HF diet supplemented with powdered MA (MAP, 1%, 3%, and 5%) for 12 weeks. The anti-obesity effects of MAP supplementation on body weight, fat mass development, and lipid-related markers were assessed. Consumption of an HF diet resulted in increased body weight, serum lipids, relative adipose tissues weight, and liver fat accumulation. However, administration of MAP significantly decreased body weight gain, food intake, food efficiency ratio, hepatic cholesterol level, and adipose tissue weight in a dose-dependent manner. In addition, treatment with MAP significantly reduced the occurrence of fatty liver deposits and steatosis, and inhibited an HF diet-induced increase in adipocyte size. These results suggest that dietary supplementation with MAP exerts anti-obesity effects and indicate that MAP could be used as a functional food to control obesity.

Aronia melanocarpa reduced adiposity via enhanced lipolysis in high-fat diet-induced obese mice

  • Kim, Hyun Kyung;Jung, Jiyeon;Kang, Eun Young;Gang, Gyoungok;Kim, Wooki;Go, Gwang-woong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.255-262
    • /
    • 2020
  • Obesity is a critical health issue in Korea, where half of all adults are overweight and a third obese. Aronia melanocarpa -rich in flavonoids and phenolics- with antioxidant and anti-inflammatory activities, could have anti-obesity activity and reduce body fat mass by upregulating lipolysis and β-oxidation in obese mice. Male C57BL/6J mice (n=12) were assigned into four groups: normal chow (18% kcal from fat); high-fat diet control (HFD, 45% kcal from fat); HFD+A. melanocarpa (200 mg/kg diet); HFD+Xenical (500 mg/kg diet, positive control). Antioxidant capacity of A. melanocarpa was established in vitro and in vivo. Weight loss was induced as decreased adiposity and lowered respiratory quotient at rest suggested oxidation of stored fat. Adiposity reduction, accompanied with elevated fat utilization, was owing to enhanced activity of hormone-sensitive lipase. Thus, A. melanocarpa lowered adiposity by enhancing lipolysis and utilization of fatty acids in visceral fat.