• 제목/요약/키워드: High-energy milling

검색결과 297건 처리시간 0.034초

Fluid Energy Mill에 의한 점토성 무기소재 미립화 분급기술 소고 (Comminution-Classification of Clay-type Minerals by Fluid Energy Mill)

  • 김태욱;김만영;정필조;이주완
    • 한국세라믹학회지
    • /
    • 제22권5호
    • /
    • pp.47-53
    • /
    • 1985
  • In view of innovated utilization of Korean clay resources conventional techniques for pulverization are reviewed in comparison with fluid energy milling processes of fluidized-bed type. Throughout experiment indigenous halloysite ores (white grade) after usual pretreatment are employed as typical sample. It is evidenced that grinding by means of porcelain ball mills has limitation in reducing clay particles to less than 10${\mu}{\textrm}{m}$ in diameter regardless of whether it is processed in dry or wet. Upon use of tungsten carbide bull mill particulation to submicron sizes could be effected with relative ease but severe coloration in grey is attended indicating metallic contamination possibly from friction of the grinding apparatus itself. In contrast the modified fluid en ergy milling enables particulation to $\leq$10${\mu}{\textrm}{m}$ in diameter with simultaneous classification int olimited ranges of particle size distributions. Since this technique is in principle based on the interparticle collisions rather than on the frictions between particles and mill surfaces minimum impurity attendance would be an additional advantage. Evidence leads to the conclusion that the fluidized-bed type milling is regarded as highly effective in puverization as well as fractionation of the clay minerals under examination. This is especially so in contemplating high-value and/or high-purity clay products.

  • PDF

탄소나노섬유의 밀링에 따른 전기화학적 에너지 저장 특성 (Electrochemical Energy Storage of Milled Carbon Nanofiber)

  • 이혜민;전현;최원경;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.527-533
    • /
    • 2011
  • CNFs had been well addressed due to numerous promising applications in science and technology. Besides the same physicochemical properties of ordinary carbon materials such as active carbons and carbon black, they exhibit specific, e.g., tubular or fibrous structures, a large surface area, high electrical conductivity stability, as well as extremely high mechanical strengh and modulus, which make them a superior material for electrochemical capacitors. In this study, CNFs were pretreated by mechanical milling with different time in mortar and pestle. The milled CNFs were used as active material of electrode whose electrochemical property was tested to find physicochemical characterization variation. CNF electrode milled for 5 min has the highest electric capacitance. XPS spectrum were employed to explore changes in functional group induced from mechanical milling. Crystal size was calculated to analyze change of peak from different milling time by XRD. The CNF milled for 5 min has the largest crystal size and the highest electric capacitance.

수소 분위기에서 고 에너지 볼 밀링으로 제조한 80Mg+14Ni+6TaF5합금의 수소와의 반응 속도와 수소 저장 용량 (Reaction Rate with Hydrogen and Hydrogen-storage Capacity of an 80Mg+14Ni+6TaF5 Alloy Prepared by High-energy Ball Milling in Hydrogen)

  • 박혜령;송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.137-143
    • /
    • 2017
  • In the present study, Ni and $TaF_5$ were chosen as additives to enhance the hydriding and dehydriding rates of Mg. A sample with a composition of 80 wt% Mg + 14 wt% Ni + 6 wt% $TaF_5$ (named $80Mg+14Ni+6TaF_5$) was prepared by high-energy ball milling in hydrogen. Its hydriding and dehydriding properties were then examined. At the fourth cycle, the activated sample absorbed 3.88 wt% H for 2.5 min, 4.74 wt% H for 5 min, and 5.75 wt% H for 60 min at 593 K under 12 bar $H_2$. $80Mg+14Ni+6TaF_5$ had an effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of about 5.8 wt%. The sample desorbed 1.42 wt% H for 5 min, 3.42 wt% H for 15 min, and 5.09 wt% H for 60 min at 593 K under 1.0 bar $H_2$. Line scanning results by EDS for $80Mg+14Ni+6TaF_5$ before and after cycling showed that the peaks of Ta and F appeared at different positions, indicating that the $TaF_5$ in $80Mg+14Ni+6TaF_5$ was decomposed.

고에너지볼밀을 이용한 PVA 고분자가 표면 코팅된 B4C 나노복합재 제조 (The Fabrication of PVA Polymer Coated on the Surface of B4C Nanocomposite by High Energy Ball Mill)

  • 엄영랑;김재우;정진우;이창규
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.110-114
    • /
    • 2009
  • Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide ($B_4C$) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured $B_4C$/PVA was about 50 nm. The core/shell structured $B_4C$/PVA was formed by dry milling. However, the hydrolyzed PVA of $98{\sim}99%$ with high glass transition temperature ($T_g$) was rarely coated on the powder. The $T_g$ of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.

Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites

  • Nga-Linh Vu;Nga-Linh Vu;Dae-Jun Heo;Thi Hinh Dinh;Chang Won Ahn;Chang Won Ahn;Hyoung-Su Han;Jae-Shin Lee
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.505-512
    • /
    • 2023
  • This study investigated crystal structures, microstructures, and electric-field-induced strain (EFIS) properties of Bi-based lead-free ferroelectric/relaxor composites. Bi1/2Na0.82K0.18)1/2TiO3 (BNKT) as a ferroelectric material and 0.78Bi1/2(Na0.78K0.22)1/2TiO3-0.02LaFeO3 (BNKT2LF) as a relaxor material were synthesized using a conventional solid-state reaction method, and the resulting BNKT2LF powders were subjected to high-energy ball milling (HEBM) after calcination. As a result, HEBM proved a larger average grain size of sintered samples compared to conventional ball milling (CBM). In addition, the increased sintering time led to grain growth. Furthermore, HEBM treatment and sintering time demonstrated a significant effect on EFIS of BNKT/BNKT2LF composites. At 6 kV/mm, 0.35% of the maximum strain (Smax) was observed in the HEBM sample sintered for 12 h. The unipolar strain curves of CBM samples were almost linear, indicating almost no phase transitions, while HEBM samples displayed phase transitions at 5~6 kV/mm for all sintering time levels, showing the highest Smax/Emax value of 700 pm/V. These results indicated that HEBM treatment with a long sintering time might significantly enhance the electromechanical strain properties of BNT-based ceramics.

High Performance Cements and Advanced Ordinary Portland Cement Manufacturing by HEM-refinement

  • Zoz, H.;Jaramillo V., D.;Tian, Z.;Trindade, B.;Ren, H.;Chimal-V, O.;Torre, S.Diaz de la
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1119-1120
    • /
    • 2006
  • High Energy Milling (HEM) is applied for the grinding of cement and this can lead to substantial refinement $(<2{\mu}m)$ and mechanically activation of the powder particles. The present paper reviews the preliminary studies, explains the novel technique and suggests the route into commercial application. Particular attention is paid to wear results with an applied $Si_3N_4-grinding$ unit where no substantial wear was found after 4000 h of operation.

  • PDF

Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery

  • Doh, Chil-Hoon;Shin, Hye-Min;Kim, Dong-Hun;Chung, Young-Dong;Moon, Seong-In;Jin, Bong-Soo;Kim, Hyun-Soo;Kim, Ki-Won;Oh, Dae-Hee;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.309-312
    • /
    • 2008
  • Two different anode composite materials comprising of Fe, Cu and Si prepared using high energy ball milling (HEBM) were explored for their capacity and cycling behaviors. Prepared powder composites in the ratio Cu:Fe:Si = 1:1:2.5 and 1:1:3.5 were characterized through X-Ray diffraction (XRD) and scanning electron microscope (SEM). Nevertheless, the XRD shows absence of any new alloy/compound formation upon ball milling, the elements present in Cu(1)Fe(1)Si(2.5)/Graphite composite along with insito generated Li2O demonstrate a superior anodic behavior and delivers a reversible capacity of 340 mAh/g with a high coulombic efficiency (98%). The higher silicon content Cu(1)Fe(1)Si(3.5) along with graphite could not sustain capacity with cycling possibly due to ineffective buffer action of the anode constituents.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.