• 제목/요약/키워드: High-energy Diets

검색결과 281건 처리시간 0.024초

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권1호
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.

Effects of feed intake on the diversity and population density of homoacetogens in the large intestine of pigs

  • Matsui, Hiroki;Mimura, Ayumi;Maekawa, Sakiko;Ban-Tokuda, Tomomi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1907-1913
    • /
    • 2019
  • Objective: Homoacetogens play important roles in the production of acetate in the large intestine of monogastric mammals. However, their diversity in the porcine large intestine is still unknown. Marker gene analysis was performed to assess the effects of energy level on the diversity and population densities of homoacetogens in porcine feces. Methods: Crossbred pigs were fed high or low energy-level diets. The high-intake (HI) diet was sufficient to allow a daily gain of 1.2 kg. The low-intake (LI) diet provided 0.6 times the amount of energy as the HI diet. Genetic diversity was analyzed using formyltetrahydrofolate synthetase gene (FHS) clone libraries derived from fecal DNA samples. FHS DNA copy numbers were quantified using real-time polymerase chain reaction. Results: A wide variety of FHS sequences was recovered from animals in both treatments. No differences in FHS clone libraries between the HI and LI groups were found. During the experimental period, no significant differences in the proportion of FHS copy numbers were observed between the two treatment groups. Conclusion: This is the first reported molecular diversity analysis using specific homoacetogen marker genes from the large intestines of pigs. There was no observable effect of feed intake on acetogen diversity.

Effect of Replacing Soybean Meal with Soya Waste and Fish Meal with Ensiled Shrimp Waste on the Performance of Growing Crossbred Ducks

  • Dong, Nguyen Thi Kim;Elwinger, K.;Lindberg, J.E.;Ogle, R. Brian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권6호
    • /
    • pp.825-834
    • /
    • 2005
  • Two experiments were conducted with growing crossbred Super-Meat ducks at the experimental duck farm of Cantho University to evaluate the effects of reducing the proportion of soybean meal (SBM) in a broken rice (BR)-SBM mixture and providing soya waste (SW) ad libitum (Expt. 1), and reducing the proportion of fish meal (FM) in a BR-FM mixture and supplying ensiled shrimp waste (ESW) ad libitum (Expt.2). Both experiments included five treatments, with three replicates and ten growing ducks per replicate. In Expt.1, the five diets were based on BR and five levels of SBM, with SW offered ad libitum. The control diet (SBM25) consisted of 75% BR and 25% SBM, and the other four treatments included SBM levels of 20% (SBM20), 14% (SBM14), 8% (SBM8) and 0% (SBM0) mixed with BR to 100%, and with SW ad libitum. In Expt. 2, the control diet consisted of 86% BR and 14% FM, and the other dietary treatments had FM levels of 11% (FM11), 8% (FM8), 4% (FM4) and 0% (FM0) mixed with BR, and with ESW ad libitum. In Expt. 1, total intakes of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF) and metabolizable energy (ME) were higher for birds given SW (p<0.001). Total CP intake was highest on the SBM20 diet, and lowest on the SBM0 diet (p<0.001). Lower daily gain (DG) was found for the SBM0 diet (p<0.01). Carcass weights were higher on the control treatment, with the lowest values on the SBM0 diet (p<0.001). Gizzard weights were higher on diets with high intakes of SW (p<0.05). In Expt. 2, birds with high intakes of ESW (FM4 and FM0) had lower (p<0.01) daily intakes of DM. The total CP intakes declined (p<0.001) with higher intakes of ESW. The highest DG were for the control and FM11 diets, while the lowest value was for diet FM0 (p<0.001). The poorest feed conversion ratio (FCR) was for the FM0 treatment (p<0.01). Lower weights of carcass and breast muscle were found on the FM0 diet (p<0.001). Feed costs per kg gain were only slightly different between diets. However, the lowest feed cost was for ducks on the SBM0 and FM11 diets in Expt.1 and Expt. 2, respectively.

Effects of dietary energy and crude protein levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs

  • Fang, Lin Hu;Jin, Ying Hai;Do, Sung Ho;Hong, Jin Su;Kim, Byung Ock;Han, Tae Hee;Kim, Yoo Yong
    • Journal of Animal Science and Technology
    • /
    • 제61권4호
    • /
    • pp.204-215
    • /
    • 2019
  • This experiment was conducted to evaluate the effect of dietary energy and crude protein (CP) levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs. A total of 180 crossbred pigs ([Yorkshire ${\times}$ Landrace] ${\times}$ Duroc) with an average body weight of $30.96{\pm}3.068kg$ were used for a 12-week feeding trial. Experimental pigs were allotted to a $2{\times}3$ factorial arrangement using a randomized complete block (RCB) design. The first factor was two levels of dietary metabolizable energy (ME) density (13.40 MJ/kg or 13.82 MJ/kg), and the second factor was three dietary CP levels based on subdivision of growing-finishing phases (high: 18%/16.3%/16.3%/13.2% middle: 17%/15.3%/15.3%/12.2% and low: 16%/14.3%/14.3%/11.2%). Average daily gain (ADG) and gain-feed ratio (G:F ratio) decreased as dietary CP level was decreased linearly (linear, p < 0.05; p < 0.05, respectively) in the early growing period, and G:F ration also decreased as dietary CP level was decreased linearly (linearly, p < 0.05) over the whole growing phase. Over the entire experimental period, G:F ratio decreased as dietary ME level decreased (p = 0.01). Blood urea nitrogen (BUN) concentration was increased as dietary energy level decreased in growing period (p < 0.01). During finishing period, total protein concentration was decreased by lower dietary energy level (p < 0.05). In this study, there were no significant differences in proximate factors, physiochemical properties, muscle TBARS assay results, pH changes, or color of pork by dietary treatments. However, saturated fatty acid (SFA) increased (p < 0.01) and polyunsaturated fatty acid (PUFA) decreased (p < 0.05) when ME was decreased by 0.42 MJ/kg in growing-finishing pig diets. In addition, monounsaturated fatty acid (MUFA) tended to increase when CP level was decreased in growing-finishing pig diets (p = 0.06). A growing-finishing diet of 13.82 MJ/kg diet of ME with the high CP level can improve growth performance and show better fatty acids composition of pork.

Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts

  • Jin, S.S.;Jung, S.W.;Jang, J.C.;Chung, W.L.;Jeong, J.H.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권7호
    • /
    • pp.1004-1012
    • /
    • 2016
  • This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts ($Yorkshire{\times}Landrace$) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other treatments during lactation. Consequently, an adequate energy requirement of gestating gilts is 6,400 kcal of ME/d.

Effects of Creep Feed with Varied Energy Density Diets on Litter Performance

  • Yan, L.;Jang, H.D.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권10호
    • /
    • pp.1435-1439
    • /
    • 2011
  • This study was conducted to evaluate the effects of creep feed with different energy densities on litter performance. A total of 30 sows (Landrace${\times}$Yorkshire) and their litters were randomly assigned with 1, 2, or 3+parities into 1 of 3 treatments (10 sows). Dietary treatments were: i) CON (no creep feed), ii) LE (creep feed (DE 4,000 kcal/kg) from 5 d of age until weaning (21 d)), and iii) HE (creep feed (DE 5,000 kcal/kg) from 5 d of age until weaning). Each piglet was weighed at d 5, 10, 15, 21 (weaning), and d 7 postweaning to determine ADG. Creep feeding reduced concentrations of epinephrine, norepinephrine, and cortisol compared with those in CON group (p<0.05). Creep feeding reduced (p<0.05) the weaning-to-oestrus interval in sows. Piglets in the HE groups evidenced greater ADG (p = 0.024) and ADFI (p = 0.001) post-weaning than those in CON treatments. Creep feeding decreased (p<0.05) the suckling time of piglet in this study. In conclusion, creep feeding increased growth and feed intake of pigs after weaning. It can decrease the oestrus interval of sows. There was no difference between providing a high energy or a low energy creep fed diet to the piglets.

세로토닌과 에너지 대사 (Serotonin and Energy Metabolism)

  • 김경곤
    • 비만대사연구학술지
    • /
    • 제3권1호
    • /
    • pp.35-42
    • /
    • 2024
  • Serotonin, a biogenic amine widely found in many organisms, functions as both a neurotransmitter and hormone. Although serotonin is involved in various physiological processes, this study aimed to review its role in energy metabolism. Given that serotonin cannot cross the blood-brain barrier and is synthesized by two different isoforms of tryptophan hydroxylase in the central nervous system (CNS) and peripheral tissues, it is reasonable to assume that serotonin in the CNS and peripheral tissues functions independently. Recent studies have demonstrated how serotonin influences energy metabolism in metabolic target organs such as the intestines, liver, pancreas, and adipose tissue. In summary, serotonin in the CNS induces satiety and appetite suppression, stimulates thermogenesis, and reduces body weight. Conversely, serotonin in the periphery increases intestinal motility, stimulates gluconeogenesis in the liver, suppresses glucose uptake by hepatocytes, promotes fat uptake by liver cells, stimulates insulin secretion while suppressing glucagon secretion in the pancreatic islets, promotes lipogenesis in white adipose tissue, inhibits lipolysis and browning of white adipose tissue, and suppresses thermogenesis in brown adipose tissue, thereby storing energy and increasing body weight. However, considering that most experimental results were obtained using mice and conducted under specific nutritional conditions, such as high-fat diets, whether serotonin acts in the same way in humans, whether it will act similarly in individuals with normal versus obese weights, and whether its effects vary depending on the type of food consumed, remain unknown.

산란계에서 High Oil Corn의 사료가치 평가

  • 이봉덕;김영호;김동준
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2000년도 제17차 정기총회 및 학술발표
    • /
    • pp.108-110
    • /
    • 2000
  • A 12-w feeding trial was conducted with 600 38-wk-old layers to evaluate the nutritive value of high oil corn(HOC) in layer diets. For the control, a commercial corn-soybean meal basal diet was used. An iso-calorie diet(HOC-ISO) was prepared replacing corn with HOC in the control diet. In addition a third diet was prepared by simply replacing corn with HOC on 1:1 basis to give a high energy diet(HOC-1:1). There were 5 replicates per treatment, and 40 birds per replicate. Birds were housed in an open-sided layer house equipped with wire cages. Feed and water were provided ad libitum, and 17L:7D lighting program was adopted. No significant difference (P>0.05) was found among dietary treatments in laying performance. Also physical qualities of eggs were not significantly affected by the feeding of HOC. Although not significant, HOC-ISO tended to improve the laying rate during the summer. The HOC feeding significantly increased the polyunsaturated fatty acids contents in egg yolk, especially the linoleic acid The AME contents of Chinese yellow corn, U.S. corn, and HOC were 3177, 3158 and 3387 kcal/kg respectively.

  • PDF

The Use of High-oil Corn in Young Broiler Chicken Diets

  • Kim, I.B.;Allee, G.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.880-883
    • /
    • 2003
  • The objective of this study was to measure performance of young broiler chickens fed three varieties of high-oil corn (HOC 1, 2, and 3) compared with eight varieties of normal corn (NC). HOC varieties contained about 80% more oil than NC (average crude fat; 6.71% vs 3.72%) and about 29% more protein (average CP; 9.54% vs 7.38%). Each experimental diet was formulated with the same amount (55.205%) of each corn hybrid. Experiment 1 had by six dietary treatments (HOC1 and five NC varieties, 360 chickens) and Experiment 2 had five treatments (HOC2, HOC3, and three NC varieties, 250 chickens). In Exp. 1, for feed efficiency (F/G), the treatment contained HOC1 had better performance (p<0.05) than other NC varieties except NC5. As expected, there was no significant difference in average daily feed intake (p>0.05) among dietary treatments. The dietary treatment of HOC1 gave an improvement of 4.3% in F/G that came from 6% higher gross energy (GE) value of HOC1. Compared with Exp. 2, the dietary treatments contained HOC hybrids gave 4.4% higher F/G than NC dietary treatments, which came from a 5% increase in GE value. HOC varieties had superior nutrients content to NC for poultry, due to the fact that HOC contained higher concentrations of energy, protein, lysine, and methionine, thus improving growth and F/G.

Beet pulp as soluble fiber source and dietary energy levels for growing pigs under heat stress

  • Yo Han Choi;Ye Jin Min;Da Yeon Jeon;Hyun Ju Jin;Yong Dae Jeong;Hyun Ju Park;Abdolreza Hosseindoust;Sang Hun Ha;Jun Young Mun;Jin Soo Kim;Jo Eun Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.989-1001
    • /
    • 2023
  • The study evaluated the effects of dietary fiber and energy levels administered during two growing periods (d 0-28 and d 29-56) for pigs exposed to a high temperature. A total of 96 growing pigs were used in six treatments as: Two treatments in thermoneutral temperature (21℃-24℃) with dietary energy of 3,300 and the inclusion of high or low fiber, two treatments in heat stress (30℃-34℃) with dietary energy of 3,300 and the inclusion of high or low fiber, and two treatments in heat stress with dietary energy of 3,450 and the inclusion of high or low fiber. Among standard energy level treatments, heat-stressed pigs showed lower average daily gain (ADG), feed intake, digestibility of dry matter, gross energy, crude protein, and crude fiber in phases 1 and 2. Moreover, higher concentrations of acetate, propionate, butyrate, and total short-chain fatty acid (SCFA) in feces were shown in pigs fed high fiber diets. There was a negative interaction between dietary fiber and energy for the fecal concentration of isobutyrate in phase 1 and valerate in phase 2. Pigs in heat stress treatments showed a higher rectal temperature, respiratory rate, hair cortisol, plasma zonulin, and fecal lipocalin-2. Among heat stress treatments, the overall ADG was increased in pigs fed high fiber. Pigs fed high dietary fiber showed a greater concentration of acetate, propionate, butyrate, and total SCFA. High fiber treatments decreased plasma zonulin. In conclusion, the inclusion of beet pulp, soluble fiber, at the level of 4% looks necessary in pigs diet during heat stress.