• Title/Summary/Keyword: High-efficient power

Search Result 1,334, Processing Time 0.03 seconds

Towards Thermally Stable Tandem Organic Solar Cells

  • Yang, Feng;Wang, Sihan;Kim, Ji-Hwan;Kim, Yong-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.410.2-410.2
    • /
    • 2016
  • Tandem structure is promising in organic solar cells because of its double open-circuit voltage (VOC) and efficient photon energy conversion. In a typical tandem device, the two single sub-cells are stacked and connected by an interconnecting layer. The fabrication of two sub-cells are usually carried out in a glovebox filled with nitrogen or argon gas, which makes it expensive and laborious. We report a glovebox-free fabricated inverted tandem organic solar cells wherein the tandem structure comprises sandwiched interconnecting layer based on p-doped hole-transporting, metal, and electron-transporting materials. Complete fabrication process of the tandem device was performed outside the glove box. The tandem solar cells based on poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) can realize a high VOC, which sums up of the two sub-cells. The tandem device structure was ITO/ZnO/P3HT:PCBM/PEDOT:PSS/MoO3/Au/Al/ZnO-d/P3HT:PCBM/PEDOT:PSS/Ag. The separate sub-cells were morphologically and thermally stable up to 160 oC. The high stability of the active layer benefits in the fabrication processes of tandem device. The performance of tandem organic solar cells comes from the sub-cells with an 50 nm thick active layer of P3HT:PCBM, achieving an average power conversion efficiency (PCE) of 2.9% (n=12) with short-circuit current density (JSC) = 4.26 mA/cm2, VOC = 1.10 V, and fill factor (FF) = 0.62. Based on these findings, we propose a new method to improve the performance and stability of tandem organic solar cells.

  • PDF

AN INVESTIGATION ON HVLS FAN PERFORMANCE WITH DIFFERENT BLADE CONFIGURATIONS (날개 형상에 따른 HVLS의 성능에 관한 연구)

  • Moshfeghi, Mohammad;Hur, Nahmkeon;Kim, Young Joo;Kang, Hyun Wook
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.80-85
    • /
    • 2014
  • High-volume low-speed (HVLS) fans are one category of ceiling fan installed in large enclosings such as warehouses, large barns and health clubs in order to generate comfortable air circulation. As a rotary blade, aerodynamic performance of a HVLS fan is predominantly related to its airfoil(s), and the pitch and twist angles. This paper first, investigates the effects of airfoil on the performances of three different HVLS fans with NACA 5414, 6413 and 7415 airfoils. The fans have six untwisted blades with the diameter of 6 m and rotate at 60 RPM. The blades pitch angels are $12^{\circ}$, $12^{\circ}$ and $13^{\circ}$, respectively. The results are presented in the form of the aerodynamic forces and moments, volumetric flow rate and streamlines. Regarding the volumetric flow of air, the results show that the model with NACA 7415 has the best performance. Hence, two other HVLS fans with the same airfoil but, with four and five blades are studied in order to investigate the effects of number of blades. From the point of view of air circulation still the six-bladed fan is the best one; however, the five-bladed fan is more efficient in power consumption.

Specification-based Analog Circuits Test using High Performance Current Sensors (고성능 전류감지기를 이용한 Specification 기반의 아날로그 회로 테스트)

  • Lee, Jae-Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1260-1270
    • /
    • 2007
  • Testing and diagnosis of analog circuits(or mixed-signal circuits) continue to be a hard task for test engineers and efficient test methodologies to solve these problems are needed. This paper proposes a novel analog circuits test technique using time slot specification (TSS) based built-in current sensors (BICS). A technique for location of a fault site and separation of fault type based on TSS is also presented. The proposed built-in current sensors and TSS technique has high testability, fault coverage and a capability to diagnose catastrophic faults and parametric faults in analog circuits. In order to reduce time complexity of test point insertion procedure, external output and power nodes are used for test points and the current sensors are implemented in the automatic test equipment(ATE). The digital output of BICS can be easily combined with built-in digital test modules for analog IC test.

  • PDF

An Proxy Trajectory Based Storage in Sensor Networks (센서네트워크에서의 프록시 트라젝토리 기반 데이터 저장 기법)

  • Lim, Hwa-Jung;Lee, Heon-Guil
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.513-522
    • /
    • 2008
  • Efficient data dissemination is one of the important subjects for sensor networks. High accessibility of the sensed data can be kept by deploying the data centric storage approach in which data is stored over the nodes in the sensor network itself rather than external storages or systems. The advantage of this approach is its direct accessibility in a real-time without the severe burden on delay and power dissipation on the data path to the external storages or systems. However, if the queries from many users are concentrated to the few nodes with data, then the response time could be increased and it could lead to the reduction of network life time by rapid energy dissipation caused by concentrated network load. In this paper, we propose a adaptive data centric storage scheme based on proxy trajectory (APT) mechanism. We highlight the data centric storage mechanism by taking account of supporting large number of users, and make it feasible to provide high-performance accessibility when a non-uniform traffic pattern is offered. Storing data around the localized users by considering spatial data-access locality, the proxy trajectory of APT provides fast response for the users. The trajectory, furthermore, may help the mobile users to roams freely within the area they dwell.

Study on the high efficiency cleaning performance of the diesel vehicle DPF (디젤 자동차용 매연저감장치(DPF)의 클리닝 성능 고도화에 관한 연구)

  • Kim, Hyongjun;Chung, Jaewoo;Kang, Jungho;Lee, Jinwoo;Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Regulations for the exhaust gas of diesel vehicles are being strengthened every year. Recently, diesel emission regulations for HC, CO, NOx, and particulate matter (PM) have been subject to very strict standards. In the future, the regulation of PM is expected to become stricter. Accordingly, diesel particulate filters (DPFs) have been applied to most diesel vehicles for PM reduction. With increasing engine mileage, ash and soot from the engine exhaust gas accumulate inside the DPF. This accumulation can damage the DPF or degrade engine performance. Therefore, efficient cleaning of the DPF is critical for the maintenance of the engine. If the DPF is well managed through regular cleaning, it can improve the power and fuel economy of the engine and reduce maintenance costs. Therefore, this study was performed to develop a high-efficiency cleaning method for DPFs and an apparatus that can more effectively clean out the accumulated ash and soot.

A Study of Parallel Operation of Module Power using CAN Communication (CAN통신을 이용한 모듈전원의 병렬운전에 관한 연구)

  • Park, Seong-Mi;Lee, Sang-Hyeok;Park, Sung-Jun;Lee, Bae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3603-3609
    • /
    • 2011
  • In this paper, we proposes new load-sharing algorism for equal current division using CAN communication. Proposed algorithm is different from conventional analog method, it performed strong Load-sharing using bi-direction high speed communication. Each modules constitution on independence controller (voltage controller, electric current controller). In parallel system prototype, each module have controller and performed load-sharing according to master module integral value. Also additional controller use for getting each module situations that fault situation of module and fault locate of module. we implemented high efficient load-sharing and redundancy. In this paper, we verify the validity of proposed algorithm using PSIM program and prototype.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

An Optimal Frequency Condition for An Induction Hardening for An Axle Shaft using Thermal-Electromagnetic Coupled Analysis (열-전자기 연성해석을 이용한 차축에 대한 최적의 고주파 열처리 주파수 조건에 대한 연구)

  • Choi, Jin Kyu;Nam, Kwang Sik;Kim, Jae Ki;Choi, Ho Min;Lee, Seok Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.207-212
    • /
    • 2016
  • High-frequency induction hardening (HFIH) is used in many industries and has a number of advantages, including reliability and repeatability. It is a non-contact method of providing energy-efficient heat in the minimum amount of time without using a flame. Recently, HFIH has been actively studied using the finite-element method (FEM), however, these studies only focused on the accuracy of the analysis. In this paper, we analyzed HFIH by using a variable frequency based on the conditions of the same shape and input power then comparing the analysis results to experimental results. The analysis and experimental results indicate that the hardening depths are approximately the same using the optimal frequency of 3kHz.

Influence of Curing Temperature on the Strength Properties of Fly Ash Based Cement ZERO Mortar (양생온도가 플라이애시 기반 시멘트 ZERO 모르타르의 강도에 미치는 영향)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.665-668
    • /
    • 2008
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution($\sim$7% of total of CO$_2$ emissions). Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Therefore, In this study, influence of curing temperature(30, 60, 90$^{\circ}$C) on the strength of properties fly ash based cement ZERO mortar was investigate, measured a weight change and pH change according to each care of curing temperature. The test results that a curing at 90$^{\circ}$C is appropriate in case of the high strength concrete is required in the early-age of the curing and 60$^{\circ}$C is efficient for the case of requiring high strength at age 28 days. Furthermore pH variation and value of compressive strength are judged to correlate but change of weight is not the case.

  • PDF

A Stable and Efficient Host Material Having Tetraphenylsilane for Phosphorescent Organic Light Emitting Diodes

  • Park, Hyung-Dol;Kang, Jae-Wook;Lee, Deug-Sang;Kim, Ji-Whan;Jeong, Won-Ik;Park, Young-Seo;Lee, Se-Hyung;Go, Kyung-Moon;Lee, Jong-Soon;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.503-505
    • /
    • 2008
  • A host material containing tetraphenylsilane, 9-(4-triphenylsilanyl-(1,1'4,1")-terphenyl-4"-yl)-9H-cabazole (TSTC), was synthesized for green phosphorescent organic emitting diodes. $Ir(ppy)_3$ based OLEDs using TSTC host and DTBT (2,4-diphenyl-6-(4'yl)-1,3,5-triazine) hole blocking layer (HBL) showed the maximum external quantum efficiency of 19.8 %, the power efficiency of 59.4 lm and high operational stability with a half lifetime of 160,000 h at an initial luminance of $100\;cd/m^2$.

  • PDF