• Title/Summary/Keyword: High-efficient power

Search Result 1,334, Processing Time 0.029 seconds

Multiple Sink Nodes to Improve Performance in WSN

  • Dick, Mugerwa;Alwabel, Mohammed;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.676-683
    • /
    • 2019
  • Wireless Sensor Networks (WSNs) consist of multiple tiny and power constrained sensors which use radio frequencies to carry out sensing in a designated sensor area. To effectively design and implement reliable WSN, it is critical to consider models, protocols, and algorithms that can optimize energy consumption of all the sensor nodes with optimal amount of packet delivery. It has been observed that deploying a single sink node comes with numerous challenges especially in a situation with high node density and congestion. Sensor nodes close to a single sink node receive more transmission traffic load compared to other sensors, thus causing quick depletion of energy which finally leads to an energy hole and sink hole problems. In this paper, we proposed the use of multiple energy efficient sink nodes with brute force technique under optimized parameters to improve on the number of packets delivered within a given time. Simulation results not only depict that, deploying N sink nodes in a sensor area has a maximum limit to offer a justifiable improvement in terms of packet delivery ratio but also offers a reduction in End to End delay and reliability in case of failure of a single sink node, and an improvement in the network lifetime rather than deploying a single static sink node.

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

DEVELOPMENT OF AUTONOMOUS QoS BASED MULTICAST COMMUNICATION SYSTEM IN MANETS

  • Sarangi, Sanjaya Kumar;Panda, Mrutyunjaya
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.342-352
    • /
    • 2021
  • Multicast Routings is a big challenge due to limitations such as node power and bandwidth Mobile Ad-hoc Network (MANET). The path to be chosen from the source to the destination node requires protocols. Multicast protocols support group-oriented operations in a bandwidth-efficient way. While several protocols for multi-cast MANETs have been evolved, security remains a challenging problem. Consequently, MANET is required for high quality of service measures (QoS) such infrastructure and application to be identified. The goal of a MANETs QoS-aware protocol is to discover more optimal pathways between the network source/destination nodes and hence the QoS demands. It works by employing the optimization method to pick the route path with the emphasis on several QoS metrics. In this paper safe routing is guaranteed using the Secured Multicast Routing offered in MANET by utilizing the Ant Colony Optimization (ACO) technique to integrate the QOS-conscious route setup into the route selection. This implies that only the data transmission may select the way to meet the QoS limitations from source to destination. Furthermore, the track reliability is considered when selecting the best path between the source and destination nodes. For the optimization of the best path and its performance, the optimized algorithm called the micro artificial bee colony approach is chosen about the probabilistic ant routing technique.

Research on Multi-precision Multiplication for Public Key Cryptography over Embedded Devices (임베디드 장비 상에서의 공개키 기반 암호를 위한 다중 곱셈기 최신 연구 동향)

  • Seo, Hwajeong;Kim, Howon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.999-1007
    • /
    • 2012
  • Multi-precision multiplication over public key cryptography should be considered for performance enhancement due to its computational complexity. Particularly, embedded device is not suitable to execute high complex computation, public key cryptography, because of its limited computational power and capacity. To overcome this flaw, research on multi-precision multiplication with fast computation and small capacity is actively being conducted. In the paper, we explore the cutting-edge technology of multi-precision multiplication for efficient implementation of public key cryptography over sensor network. This survey report will be used for further research on implementation of public key cryptography over sensor network.

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells (페로브스카이트 태양전지에서의 저온 용액 공정의 BCP 버퍼층 효과)

  • Jung, Minsu;Choi, In Woo;Kim, Dong Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.

Drilling for Lunar Surface Exploration and Shear Strength Evaluation Based on Drilling Information (달 지상탐사 지원에 필요한 시추 및 시추정보 기반 강도 평가)

  • Ryu, Byunghyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.21-31
    • /
    • 2022
  • Prospecting ice on Moon requires drilling systems to obtain subsurface samples and measure composition of ice deposits. Landers and rovers need to be equipped with drilling equipment in order to analyze the ice and subsurface resources located at the poles of Moon. These devices must be small, lightweight, low-power, highly efficient and high-performance units in order to function properly under the extreme conditions of the lunar environment. Researchers have developed a prototype drilling apparatus that is able to operate in atmospheric and cold environments. Newly developed drilling system in Korea, which is capable of performing not only sampling but also subsurface investigation, is introduced.

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

An Enhanced Neural Network Approach for Numeral Recognition

  • Venugopal, Anita;Ali, Ashraf
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.61-66
    • /
    • 2022
  • Object classification is one of the main fields in neural networks and has attracted the interest of many researchers. Although there have been vast advancements in this area, still there are many challenges that are faced even in the current era due to its inefficiency in handling large data, linguistic and dimensional complexities. Powerful hardware and software approaches in Neural Networks such as Deep Neural Networks present efficient mechanisms and contribute a lot to the field of object recognition as well as to handle time series classification. Due to the high rate of accuracy in terms of prediction rate, a neural network is often preferred in applications that require identification, segmentation, and detection based on features. Neural networks self-learning ability has revolutionized computing power and has its application in numerous fields such as powering unmanned self-driving vehicles, speech recognition, etc. In this paper, the experiment is conducted to implement a neural approach to identify numbers in different formats without human intervention. Measures are taken to improve the efficiency of the machines to classify and identify numbers. Experimental results show the importance of having training sets to achieve better recognition accuracy.

Cutting-edge Piezo/Triboelectric-based Wearable Physical Sensor Platforms

  • Park, Jiwon;Shin, Joonchul;Hur, Sunghoon;Kang, Chong-Yun;Cho, Kyung-Hoon;Song, Hyun-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.301-306
    • /
    • 2022
  • With the recent widespread implementation of Internet of Things (IoT) technology driven by Industry 4.0, self-powered sensors for wearable and implantable systems are increasingly gaining attention. Piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), which convert biomechanical energy into electrical energy, can be considered as efficient self-powered sensor platforms. These are energy harvesters that are used as low-power energy sources. However, they can also be used as sensors when an output signal is used to sense any mechanical stimuli. For sensors, collecting high-quality data is important. However, the accuracy of sensing for practical applications is equally important. This paper provides a brief review of the performance advanced by the materials and structures of the latest PENG/TENG-based wearable sensors and intelligent applications applied using artificial intelligence (AI)

A Survey on Side-Channel Attacks and Countermeasures for ECC Processor (ECC 프로세서에 대한 부채널 공격 및 대응방안 동향)

  • Jeong, Young-su;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.101-103
    • /
    • 2022
  • Elliptic curve cryptography (ECC) is widely used in hardware implementations of public-key crypto-systems for IoT devices and V2X communication because it is suitable for efficient hardware implementation and has high security strength. However, ECC-based public-key cryptography is known to have security vulnerabilities against side-channel attacks, so it is necessary to apply countermeasures against security attacks in designing ECC processor. This paper describes a survey on the side-channel attacks and countermeasures applicable to ECC processor design.

  • PDF