• Title/Summary/Keyword: High-efficient power

Search Result 1,334, Processing Time 0.024 seconds

A Study of on Minimizing the Number of V\ulcorner/V\ulcorner Pins in Simultaneous Switching Environment (동시 스위칭 환경에서 V\ulcorner/V\ulcorner Pin 수의 최소화를 위한 연구)

  • Bae, Yun-Jeong;Lee, Yun-Ok;Kim, Jae-Ha;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2179-2187
    • /
    • 2000
  • This paper provides a heuristic analysis technique which determines an optimal number of V\ulcorner/V\ulcorner pads meeting allowable Simultaneous Switching Noise(SN) budget, early in the design phase. Until now, in determining the number of V\ulcorner/V\ulcorner pads, designers had to simulate packaging models case by case in the design phase or roughly allocate the power/ground pins in an inaccurate way according to typical design rules. However, due to the high density and frequency trends of IC technologies, the V\ulcorner/V\ulcorner pads allocation method can affect an adverse effect on IC operations, which requires more accurate and efficient methods be devised. Thus, this paper proposes an analytic V\ulcorner/V\ulcorner pads calculation method that gives a practical help for packaging designs early in the design phase. The proposed method is applied to a design example of a 1/8x208 pin plastic quad flat package (PQFP) and the results are verified through simulation using HSPICE.

  • PDF

Applying an Artificial Neural Network to the Control System for Electrochemical Gear-Tooth Profile Modifications

  • Jianjun, Yi;Yifeng, Guan;Baiyang, Ji;Bin, Yu;Jinxiang, Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • Gears, crucial components in modern precision machinery for power transmission mechanisms, are required to have low contacting noise with high torque transmission, which makes the use of gear-tooth profile modifications and gear-tooth surface crowning extremely efficient and valuable. Due to the shortcomings of current techniques, such as manual rectification, mechanical modification, and numerically controlled rectification, we propose a novel electrochemical gear-tooth profile modification method based on an artificial neural network control technique. The fundamentals of electrochemical tooth-profile modifications based on real-time control and a mathematical model of the process are discussed in detail. Due to the complex and uncertain relationships among the machining parameters of electrochemical tooth-profile modification processes, we used an artificial neural network to determine the required processing electric current as the tooth-profile modification requirements were supplied. The system was implemented and a practical example was used to demonstrate that this technology is feasible and has potential applications in the production of precision machinery.

Operating performance of squid jigging vessel using the LED and metal halide fishing lamp combination (LED와 메탈핼라이드 집어등을 겸용한 오징어채낚기 어선의 조업 성능)

  • An, Heui-Chun;Bae, Jae-Hyun;Bae, Bong-Seong;Park, Jong-Myung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.395-403
    • /
    • 2013
  • Fishing efficiency of the squid jigging vessel using the LED and metal halide fishing lamp combination was analyzed to reduce the cost for fishing operation utilizing the fishing light system for high degree of efficiency in the squid jigging fishery (one of the representative coastal and offshore fisheries in Korea). This study aims to improve the nature of existing LED lamps and to develop fan-shaped LED lights having 180W of power and ${\pm}45^{\circ}$ angle of light intensity distribution. The marine experiment for making a comparison of their fishing efficiency was tested by a 9.77 tons fishing vessel from Oct. through Dec. 2012. As a result, experimental fishing vessel showed slightly higher fishing efficiency than the average of metal halide lamp-equipped vessel and 20% energy savings. This means that the combination of LED and metal halide lamps would provide an efficient way to lower energy consumption while maintaining fishing efficiency.

Performance assessment of {tris (2-methyl-1-aziridinyl) phosphine oxide} photocatalytic mineralization in a falling film reactor, using response surface methodology

  • Saien, J.;Raeisi, A.;Soleymani, A.R.;Norouzi, M.
    • Advances in environmental research
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2012
  • Tris (2-methyl-1-aziridinyl) phosphine oxide (MAPO) is extremely poisonous and persistent in aqueous media. An efficient UV/nano$TiO_2$ process was employed for its mineralization in a high duty falling film photo-reactor based on an experimental design scheme that considers interactions between the main variables. The influencing variables and their range were determined with preliminary studies. The results show substrate mineralization to some extent under mild conditions of: T = $30^{\circ}C$, pH = 8.5, $[MAPO]_0=60\;mg\;L^{-1}$ and $[TiO_2]=110\;mg\;L^{-1}$. The relative importance of the influencing parameters were initial pH > temperature > $[MAPO]_0$ > [$TiO_2$]; while the interdependence of all the parameters was significant. Accordingly, a reduced quadratic expression was developed. Meanwhile, mineralization kinetic studies, based on chemical oxygen demand, revealed a power law model with order of 2.6 during process time until 150 min.

Decomposition of HFCs using Steam Plasma (스팀 플라즈마를 이용한 HFCs 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Lee, Sung Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • CFCs (Chlorofluorocarbons) and HCFCs (Hydrochlorofluorocarbons) that are chemically stable were proven to be a greenhouse gases that can destroy ozone layer. On the other hand, HFCs (Hydrofluorocarbons) was developed as an alternative refrigerant for them, but HFCs still have a relatively higher radiative forcing, resulting in a large Global Warming Potential (GWP) of 1,300. Current regulations prohibit production and use of these chemicals. In addition, obligatory removal of existing material is in progress. Methods for the decomposition of these material can be listed as thermal cracking, catalytic decomposition and plasma process. This study reports the development of low cost and high efficiency plasma scrubber. Stability of steam plasma generation and effect of plasma parameters such as frequency of power supply and reactor geometry have been investigated in the course of the development. Method for effective removal of by-product also has been investigated. In this study, elongated rotating arc was proven to be efficient in decomposition of HFCs above 99% and to be able to generate stable steam plasma with steam contents of about 20%.

DESIGN OF OPTIMUM GROUNDING BY THE RESISTIVITY ANALYSIS OF MULTI-LAYERED SUBSURFACE (다층 대지비저항 해석에 의한 최적 접지설계)

  • HyoungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.179-188
    • /
    • 2003
  • The object of grounding of electrical facility is to protect human and machine damage from the power supply interruption high voltage by use of the accident current dissipating into the ground. Generally, it is not easy to make suitable ground design for inhomogeneous subsurface geology and the variability of accident current in magnitude and duration time. To make efficient ground, ground potential rise must be controlled in the way of overall lowering and evenness. This study shows the case of optimized ground design by use of subsurface resistivity structure from electrical soundings.

  • PDF

Thermal Management on 3D Stacked IC (3차원 적층 반도체에서의 열관리)

  • Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.5-9
    • /
    • 2015
  • Thermal management becomes serious in 3D stacked IC because of higher heat flux, increased power generation, extreme hot spot, etc. In this paper, we reviewed the recent developments of thermal management for 3D stacked IC which is a promising candidate to keep Moore's law continue. According to experimental and numerical simulation results, Cu TSV affected heat dissipation in a thin chip due to its high thermal conductivity and could be used as an efficient heat dissipation path. Other parameters like bumps, gap filling material also had effects on heat transfer between stacked ICs. Thermal aware circuit design was briefly discussed as well.

The Evaluation of Cylindrical Gear Measurement on Teeth Roots and Bottom Profiles in Different Sections (원통기어의 다단면 치형 측정평가)

  • Moon, Sung-Min;Kang, Jae-Hwa;Kido, Hiromitsu;Kurokawa, Syuhei;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2012
  • Gears are reliable and efficient power transmission elements. They have been widely used in all kinds of machinery. Nowadays, resource conservation energy conservation environmental improvements from the request of the compact, light weight, high efficiency, low cost Higher efficiency is required. Tooth root and bottom profiles of cylindrical gears affect bending fatigue life, but they are hard to measure with conventional gear measuring machine(GMM), because GMM is normally customized to measure only gear working flanks. The authors try to develop a new type of GMM by installing an extra 3D scanning probe and control software to measure tooth root and bottom profiles. First, in order to measure in various directions, a 3D scanning probe has been attached to the GMM developed. Next, calibration algorithm has been developed. Deviations of the calibration results are measured and it is found that systematic error must be caused by heat from driving motors. A new alternative GMM with driving motors generating less heat was designed and two GMMs are compared. Finally, 3 Dimension measurement of tooth root and bottom profiles of cylindrical gears is described.

Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions

  • Ebrahimi, Farzad;Salari, Erfan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, free vibration of functionally graded (FG) size-dependent nanobeams is studied within the framework of nonlocal Timoshenko beam model. It is assumed that material properties of the FG nanobeam, vary continuously through the thickness according to a power-law form. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The non-classical governing differential equations of motion are derived through Hamilton's principle and they are solved utilizing both Navier-based analytical method and an efficient and semi-analytical technique called differential transformation method (DTM). Various types of boundary conditions such as simply-supported, clamped-clamped, clamped-simply and clamped-free are assumed for edge supports. The good agreement between the presented DTM and analytical results of this article and those available in the literature validated the presented approach. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of FG nanobeams. The obtained results show the significance of the material graduation, nonlocal effect, slenderness ratio and boundary conditions on the vibration characteristics of FG nanobeams.

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF