• Title/Summary/Keyword: High-early-Strength Concrete

Search Result 461, Processing Time 0.027 seconds

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.

A Study on the Effect of Concrete Strength by Pozzolan and High-early Strength Cement (조강 및 포조란시멘트 의결경화촉진이 콘크리트 강도에 미치는 영향에 관한 연구)

  • 전현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2677-2684
    • /
    • 1972
  • This study was carried out to search for an effect on strengths of a pozzolan and a high-early strength cements due to accelerating the initial setting and a rate of strength development at early age, and to obtain the effects applicable for structural construction works safety in the cold winter weather. The results of the study were as follows: 1. The early strength of high-early strength cement was higher than an ordinary portland cement(Type I). 2. High-early strength cement had a characteristic suitable for construction works in the cold weather due to the rate of acceleration of the eary strength. 3. When using pozzolan cements, a weight proportion should be considered in mix design since the pozzolan cement has a lower specific gravity than other portland cements. 4. It was desirable for the pozzolan cement to shorten the storage period since particles of the pozzolan cement was so fine that it was likely to weathering.

  • PDF

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.

The Strength Properties of Concrete according to Curing Method (양생방법에 따른 콘크리트의 강도특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Yun, Yong-Ho;Son, Sang-Hun;Kim, Jeong-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.545-548
    • /
    • 2006
  • This study has been carried out to examine the properties of concrete according to replacement ratio and curing method of fly ash, in order to increase utilization of it. As the result of experiments, the 7 days of early age strength presented around 20MPa, up to 20% of replacement ratio, which is almost the same strength as non-replacement. However, when the replacement ratio was 30%, the strength was decreased to 16MPa, as 20% reduction compared to the non-replacement condition. In 365 days of long term aging, the strength was 5% higher, up to 20% of the replacement ratio, due to the pozzolanic reaction of fly ash. When the replacement ratio was 30%, it presented similar strength development as the non-replacement condition. Steam curing and autoclave curing increased the short age strength, regardless of the replacement ratio of fly ash; however, they don't have an effect on increasing the 365 days of long term strength. Water curing showed high strength development after 28 days, 51.81MPa, which is around 30% higher than air curing, 38.9MPa, steam curing, 38.6MPa, and autoclave curing, 39MPa. Therefore, water curing was examined as one of the very effective curing methods for developing long term strength of concrete.

  • PDF

A Study on Properties of High Blaine Slag Cement for Shotcrete (숏크리트용 고분말도 슬래그 시멘트의 특성)

  • Kim, Jae-Young;Yum, Soo-Kyung;Yoo, Dong-Woo;Choi, Hyun-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.357-364
    • /
    • 2010
  • This study was performed to get basic information about properties of high blaine slag cement(HSC) to use shotcrete(or sprayed concrete and mortar). Particle size distribution, setting time and compressive strength test, analysis like as SEM, DSC thermal analysis, XRD was carried out to investigate principle properties of HSC. Setting time of HSC was delayed slightly, but influence of accelerators was more bigger than ordinary portland cement(OPC). Compressive strength of HSC at 28 days was more higher than OPC regardless of using accelerators. Results of analysis showed early period hydration products of HSC is more small and located widely, because of the interface of between cement particle and water is increased as specific surface of cement increase. From the SEM observation and analysis of DSC and XRD results, aluminates accelerators bring on some hydration products like as calcium aluminium hydrates, alkali free accelerators increases ettringite and monosulfates. Aluminates accelerators has a advantage of setting time and early strength, alkali free accelerators increases strength after 7 days.

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

The Relationship Between the Quality of Surface Layer of Concrete Floor and the Defect of Self-Leveling Material - Evaluation Method about Surface Layer Quality of Concrete Floor Groundwork Corresponding to Defect in Self-leveling Material (Part II) - (콘크리트 표층부 품질이 SL재의 하자에 미치는 영향 - SL재의 하자 발생에 영향을 미치는 콘크리트 표층부의 품질 평가방법(II) -)

  • Kim, Doo-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.125-132
    • /
    • 2007
  • The use of Self-Leveling material is increasing recently. This paper assesses the quality of surface layer of concrete floor when Self-Leveling material is defective. The paper shows how to predict the defect of SL material before construction begins. The relationship between the quality of surface layer of concrete floor and the defect of SL material was determined and the quality of surface layer of concrete floor was then estimated. The relations between the quality of surface layer and the defect of SL material were determine considering surface strength, moisture, and consistency of surface layer. Absorbing amount was used as the indicator of consistency and the absorbing amount of test material was measured. Then the relations between the test material and surface strength were determined. Generally concrete floor with greater consistency has greater surface strength, however in this study, we hound that high impact concrete floor could have lower surface strength as the consistency gets bigger. The relations between the level of defect occurred in SL material and the quality of surface layer were examined and we clarified that the surface layer with lower consistency gets higher possibility to occur exfoliation in early stage, one or two weeks after constructing SL material. When the consistency is sufficient, the occurring situation of defect depends upon the moisture of surface layer. Little amount of moisture gets higher possibility not to occur the defect. As the amount increases, fissure generates and early exfoliation may occur. In addition, the level of fissure is highly related with the surface strength.

An Experimental Study on the Compressive Strength Property of Concrete with Ground granulated Blast Furnace Slag Using Wash Water from Recycled Aggregates (순환골재 세척수를 혼입한 고로슬래그 콘크리트의 압축강도 특성에 관한 실험적 연구)

  • Jung, Sang-Kyung;Shin, Sang-Yeop;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.34-35
    • /
    • 2015
  • The purpose of this study is to investigate the compressive strength property of concrete with Ground granulated blast furnace slag(GBFS) using wash water from recycled aggregate. When GBFS is reacted with water, it doesn't happen to hydraulic reaction but GBFS becomes latent hydraulic property in alkaline environment. For this reason, if it is possible to use wash water from recycled coarse aggregate as mixture water, GBFS have the advantage of early strength due to effect of activation. We investigated the compressive strength properties of GBFS concrete using wash water from recycled aggregate. According to the experimentation result, ICP-OES showed wash water from recycled coarse aggregate has a high alkali value of pH of 12. Also, compressive strength in early age using wash water can be improved as an activation.

  • PDF

Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase

  • Golewski, Grzegorz Ludwik;Szostak, Bartosz
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.543-556
    • /
    • 2022
  • Fly ash (FA) is the main additive to concretes currently produced. This substitute of ordinary Portland cement (OPC) have a positive effect on the structure and mechanical parameters of mature concrete. Unfortunately, the problem of using FA as the OPC replacement is that it significantly reduces the performance of concretes in the early stages of their curing. This limits the possibility of using this type of concrete, e.g., in the prefabrication, where it is required to obtain high strength composites after short periods of their curing. In order to minimize these negative effects, research has been undertaken to increase the early strength of the concretes with FA through the application of a specially dedicated chemical nanoadmixture (NA) in the form of seeds of the C-S-H phase. Therefore, this paper presents results of tests of modified concretes both with the addition of FA and with NA. The analyses were carried out based on the results of the macroscopic and microstructural tests in 5 time periods, i.e. after: 4, 8, 12, 24 and 72 hours. The greatest increase in mechanical strength parameters and rapid development of the basic matrix phases in composites in the first 12 hours of composites curing was observed.

A Study on the Non Destructive Test by P Type Schmidt Hammer for Early Quality Control of Concrete (콘크리트의 초기강도품질관리를 위한 P형 슈미트햄머법 비파괴시험에 관한 연구)

  • 김기정;신병호;이용성;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.157-162
    • /
    • 2002
  • This study is intended to present a reference data for effective quality control of concrete through comparing the rebound value of P type schmidt hammer with the compressive strength with variation of mix proportion and curing condition. According to the results, the air-curing specimen shows the higher rebound value than standard specimen except high strength in the whole. Also the vertical stroke shows higher rebound value than horizontal stroke in standard specimen, however, the rebound value of the two does not show prominent difference in air-curing specimen. The estimation equation of compressive strength derived from this experiment estimates the compressive strength more largely than the estimation equation in P type schmidt hammer manual. Therefore it is thought that the new estimation equation that fits our condition will have to be presented.

  • PDF