• 제목/요약/키워드: High-ductility

검색결과 983건 처리시간 0.028초

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.

GFRP 표면매립공법으로 보강된 RC보의 고온노출 후 휨 성능 (Flexural Performance of RC Beams Strengthened with NSM-GFRP Exposed to High Temperature)

  • 김희승;이혜학;최경규
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.35-42
    • /
    • 2018
  • This study evaluated the fire resisting capacity and post-fire serviceability of the concrete beams retrofitted by near surface mounted method(NSM) using GFRP plates. Main parameters in the test are grout materials and fire exposure. For the test, two types of grout materials between concrete substrate and GFRP plate were used; flame resisting epoxy and filling mortar. Four RC beam specimens were made and two of them were exposed to fire according to real scale fire curve proposed KS F 2257. After the fire exposure test, flexural test were performed to investigate the flexural performance of concrete beams including strength and deformation. From the test results, it was found that the beam retrofitted by NSM-GFRP presented higher flexural strength than that of the beam without retrofit, which indicates NSM-GFRP retrofit technologies is effective to maintain flexural strength even after fire exposure. In addition, the specimens grouted by epoxy showed good performance in strength but bad performance in ductility.

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb;Fahad, Muhammad;Aslam, Muhammad
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.81-105
    • /
    • 2022
  • The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

Experimental investigation of the influence of fibre content on the flexural performance of simply supported and continuous steel/UHPC composite slabs

  • Sirui Chen;Phillip Visintin;Deric J. Oehlers
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.571-585
    • /
    • 2023
  • The application of relatively low volumes of fibres in normal strength concrete has been shown to be of significant benefit when applied to composite slabs with profiled sheet decking. This paper reports on an experimental study aimed at quantifying further potential benefits that may arise from applying ultra-high performance fibre reinforced concrete. To assess performance six simply supported beams were tested under hogging and sagging loading configurations along with three two span continuous beams. Fibre contents are varied from 0% to 2% and changes in strength, deformation, crack width and moment redistribution are measured. At the serviceability limit state, it is shown that the addition of high fibre volumes can significantly enhance member stiffness and reduce crack widths in all beams. At the ultimate limit state it is observed that a transition from 0% to 1% fibres significantly increases strength but that there is a maximum fibre volume beyond which no further increases in strength are possible. Conversely, member ductility and moment redistribution are shown to be strongly proportional to fibre volume.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Research on seismic performance of regionally confined concrete circular column with trapezoid stirrups

  • Longfei Meng;Hao Su;Yanhua Ye;Haojiang Li
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.587-600
    • /
    • 2024
  • In order to investigate the seismic performance of regionally confined concrete circular column with trapezoid stirrups (TRCCC) under high axial compression ratio, the confinement mechanism of regionally confined concrete was analyzed. Three regionally confined concrete circular columns with trapezoid stirrups were designed, and low cyclic loading tests were conducted at three different axial compression ratios (0.9, 1.1, 1.25) to study the failure mode, hysteresis curve, skeleton curve, deformation capacity, stiffness degradation and energy dissipation capacity of the specimens. The results indicate that the form of regional confinement concrete provides more uniform confinement to the normal confinement, and the confinement efficiency at the edges is 1.4 times that of normal confined concrete. The ductility coefficients of the specimens were all greater than 3 under high axial compression ratios, and the stiffness and horizontal bearing capacity increased with the increase of axial compression ratio. Therefore, it is recommended that the code of design specifications can appropriately relax the axial compression ratio limit for TRCCC. Finally, the spacing between stirrups of TRCCC was analyzed using ABAQUS software. The results showed that as the spacing between the stirrups decreased, the cracking load and peak load of TRCCC increased continuously, but the rate of increase decreases.

동적 재결정에 따른 Al7050 압출재의 파괴인성 변화 (Dynamic Recrystallization Effect on the Fracture Toughness of Al7050 Extruded Components)

  • 최재원;정영훈;손진일;천병기;김정기
    • 소성∙가공
    • /
    • 제33권5호
    • /
    • pp.315-321
    • /
    • 2024
  • Although achieving a high fracture toughness is essential for designing reliable aircraft components using aluminum alloys, only a limited number of studies have discussed the relationship between microstructure and fracture toughness. Therefore, in this study, the effects of dynamic recrystallization on the fracture toughness of Al7050 extruded alloy were investigated. Because of the temperature deviation in the extruded large component, incomplete dynamic recrystallization (DRX) occurred that results into the higher Kernel average misorientation (KAM) and sub-grain structure fraction compare with the complete DRX region. Although incomplete DRX changes KAM and sub-grain fraction, the strength and ductility difference between complete and incomplete DRX regions are not in big difference. The accumulated KAM reduces the plastic zone size, and both cleavage and a lower micro-void fraction are observed in the incomplete DRX region. Based on the different fracture behavior from different DRX behavior, the fracture toughness of the incomplete DRX is lower than that of the complete DRX region. This result implies how a different DRX behavior from temperature variation affects to the fracture toughness of high-strength aluminum alloys.

와이어로프를 적용한 고강도 철근콘크리트 기둥의 내화공법 및 하중비에 따른 내화성능에 관한 연구 (A Study on the Fire Resistance Performance Concerning Types of Fire Protection Method and Load Ratio of High Strength Concrete Column Using The Wire Rope)

  • 조범연;여인환;김흥열;김형준;권인규
    • 한국화재소방학회논문지
    • /
    • 제26권6호
    • /
    • pp.64-71
    • /
    • 2012
  • 60 MPa급, 100 MPa급 고강도 철근콘크리트 기둥에 대하여 횡구속력 보강공법(와이어로프)과 내화보강공법(Fiber-Cocktail) 적용 유무 및 하중비에 따른 내화성능을 평가하기 위하여 표준화재 재하조건에 내화실험을 실시하였다. 실험결과 60 MPa급 고강도 콘크리트 기둥의 경우 와이어로프를 적용함으로써 화재시 축방향의 연성이 향상되며, 내화성능은 23 % 이상 향상되는 것으로 나타났다. 또한 와이어로프를 적용할 경우 하중은 설계하중의 70 % 수준이 적정하다고 판단된다. 100MPa급 고강도 콘크리트 기둥에 와이어로프와 Fiber-Cocktail을 적용할 경우 띠철근만을 적용한 경우보다 내화성능이 4배 이상 향상되는 것으로 나타났으며, 100MPa급 고강도 콘크리트 기둥에 내화성능을 확보하기 위해서는 하중은 설계하중의 70 % 미만으로 설정하는 것이 적정하다고 판단된다.

지관 압축을 받는 고강도강 X형 원형강관접합부의 구조적 성능에 대한 실험적 연구 (Experimental Study of High-strength Steel CHS X-joints Under Axial Compression)

  • 이철호;김선후;정동현;김대경;김진원
    • 한국강구조학회 논문집
    • /
    • 제29권4호
    • /
    • pp.291-301
    • /
    • 2017
  • 고강도강 강관부재의 사용은 설계에서 시공에 이르기까지 다양한 이점을 제공할 수 있다. 그러나 현행의 국내외 대표적인 구조설계 기준에서는 강관구조에 고강도 강재를 적용하는 것을 금지하거나 제한하고 있다. 이러한 제한사항은 그 역학적 근거가 불분명하며 과도하게 보수적일 가능성이 있다. 본 연구에서는 일반강 및 고강도강 X형 원형강관접합부 압축 실험을 통하여 고강도강에 부과된 제한사항이 완화될 수 있는지에 대하여 다각도로 검토하였다. 실험 결과 고강도강 X형 강관접합부는 재료의 측정항복강도가 800MPa에 이름에도 불구하고 한계강도, 사용성, 연성의 관점에서 모두 일반강에 비견될 만한 성능을 보였으며, 이는 현행의 고강도강 제한사항은 완화되어야 함을 시사한다.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.