DOI QR코드

DOI QR Code

Experimental Study of High-strength Steel CHS X-joints Under Axial Compression

지관 압축을 받는 고강도강 X형 원형강관접합부의 구조적 성능에 대한 실험적 연구

  • Lee, Cheol Ho (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Kim, Seon Hu (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Chung, Dong Hyun (Dongyang Structural Engineers Group) ;
  • Kim, Dae Kyung (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Kim, Jin Won (POSCO Steel Solution Marketing Department)
  • Received : 2017.03.21
  • Accepted : 2017.07.19
  • Published : 2017.08.27

Abstract

Most of current representative design standards worldwide forbid or impose restrictions on the use of high-strength steels for hollow tubular structures. The mechanical background of these limitations appears unclear and unduly conservative, and their validity needs to be re-evaluated. In this study, a total of 9 CHS(Circular Hollow Section) X-joints were tested under axial compression and analyzed to examine if the high-strength steel restrictions specified by current design standards could be relaxed. All the high-strength steel CHS X-joints tested showed satisfactory performance compared to ordinary steel joints in terms of serviceability, ultimate strength, and ductility, although the yield strength of steel was even as high as 800MPa.

고강도강 강관부재의 사용은 설계에서 시공에 이르기까지 다양한 이점을 제공할 수 있다. 그러나 현행의 국내외 대표적인 구조설계 기준에서는 강관구조에 고강도 강재를 적용하는 것을 금지하거나 제한하고 있다. 이러한 제한사항은 그 역학적 근거가 불분명하며 과도하게 보수적일 가능성이 있다. 본 연구에서는 일반강 및 고강도강 X형 원형강관접합부 압축 실험을 통하여 고강도강에 부과된 제한사항이 완화될 수 있는지에 대하여 다각도로 검토하였다. 실험 결과 고강도강 X형 강관접합부는 재료의 측정항복강도가 800MPa에 이름에도 불구하고 한계강도, 사용성, 연성의 관점에서 모두 일반강에 비견될 만한 성능을 보였으며, 이는 현행의 고강도강 제한사항은 완화되어야 함을 시사한다.

Keywords

References

  1. AIK (2016) Korean Building Code: Chapter 7. Steel Structures, Architectural Institute of Korea.
  2. Wardenier, J., Kurobane, Y., Packer, J.A., van der Vegte, G.J., and Zhao, X.-L. (2008) Construction with Hollow Steel Sections - No.1: Design guide for Circular Hollow Section(CHS) Joints Under Predominantly Static Loading, 2nd ed., CIDECT.
  3. AISC (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
  4. CEN (2005) Eurocode 3: Design of Steel Structures - Part 1.8: Design of Joints, European Committee for Standardization, Brussels.
  5. Togo, T. (1967) Experimental Study on Mechanical Behavior of Tubular Joints, Ph.D. Dissertation, Osaka University, Osaka.
  6. van der Vegte, G.J. (1995) The Static Strength of Uniplanar and Multiplanar Tubular T- and X-Joints, Ph.D. Dissertation, Delft University of Technology, Delft.
  7. Qian, X.D. (2005) Static Strength of Thick-Walled CHS Joints and Global Frame Behavior, Ph.D. Dissertation, National University of Singapore, Singapore.
  8. Makino, Y., Kurobane, Y., and Tozaki, T. (1989) Ultimate Strength Analysis of Simple CHS Joints Using the Yield Line Theory, Proc. 3rd Int'l Symposium on Tubular Structures, Tubular Structures III, pp.147-153.
  9. Soh, C.K., Chan, T.K., and Yu, S.K. (2000) Limit Analysis of Ultimate Strength of Tubular X-Joints, Journal of Structural Engineering, ASCE, Vol.126, No.7, pp.790-797. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(790)
  10. Sammet, H. (1963) Die Festigkeit Knotenblechloser Rohrverbindungen im Stahlbau, Schweisstechnik, Vol.13, pp.481-485.
  11. Kanatani, H. (1966) Experimental Study on Welded Tubular Connections, Faculty of Engineering Report, Vol.12, pp.13-41.
  12. EPR (1971) Experimental Determination of the Ultimate Strength of Tubular Joints, Exxon Production Research Co., Houston, TX.
  13. JISC (1972) Study of Tubular Joints Used in Marine Structures, The Society of Steel Construction of Japan.
  14. Gibstein, M.B. (1973) Static Strength of Tubular Joints, Report No. 73-86-C, Det norske Veritas.
  15. Boone, T.J., Yura, J.A., and Hoadley, P.W. (1982) Chord Stress Effects on the Ultimate Strength of Tubular Joints, PMFSEL Report No. 82-1, University of Texas at Austin.
  16. Weinstein, R.M. and Yura, J.A. (1986) The Effect of Chord Stresses on the Static Strength of DT Tubular Connections, Proc. Offshore Technology Conf., OTC 5135, Houston, TX.
  17. Noordhoek, C. and Verheul, A. (1998) Static Strength of High Strength Steel Tubular Joints, CIDECT Report 5BD-9/98, Delft University of Technology, Delft.
  18. Kang, C.T., Moffat, D.G., and Mistry, J. (1998) Strength of DT Tubular Joints with Brace and Chord Compression, Journal of Structural Engineering, ASCE, Vol.124, No.7, pp.775-783. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(775)
  19. van der Vegte, G.J., Liu, D.K., Makino, Y., and Wardenier, J. (2003) New Chord Load Functions for Circular Hollow Section Joints, CIDECT Report 5BK-4/03, Delft University of Technology, Delft.
  20. van der Vegte, G.J., Makino, Y., and Wardenier, J. (2007) Effect of Chord Load on Ultimate Strength of CHS X-joints, Int'l J. of Offshore and Polar Eng., Vol.17, No.4, pp.301-308.
  21. IIW (2008) Static Design Procedure for Welded Hollow Section Joints - Recommendations. International Institute of Welding, IIW Doc. XV-1281, Subcommission XV-E, International Institute of Welding.
  22. Pecknold, D.A., Ha, C.C., and Mohr, W.C. (2000) Ultimate Strength of DT Tubular Joints with Chord Preloads, Proc. 19th Int'l Conference on Offshore Mechanics and Arctic Engineering.
  23. API (2007) Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - Working Stress Design, API RP2A, American Petroleum Institute.
  24. Dier, A.F. and Lalani, M. (1998) New Code Formulations for Tubular Joint Static Strength, Proc. 8th Int'l Symposium on Tubular Structures, Tubular Structures VIII, pp.107-116.
  25. ISO (2004) Petroleum and Natural Gas Industries - Fixed Steel Offshore Structures, ISO DIS-19902, International Organization of Standardization.
  26. Qian, X.D., Choo, Y.S., van der Vegte, G.J., and Wardenier, J. (2008) Evaluation of the New IIW CHS Strength Formula for Thick-Walled Joints, Proc. 12th Int'l Symposium on Tubular Structures, Tubular Structures XII, pp.271-279.
  27. Fleischer, O., Herion, S., and Puthli, R. (2008) Numerical Investigation on the Static Behaviour of CHS X-Joints Made of High Strength Steels, Proc. 12th Int'l Symposium on Tubular Structures, Tubular Structures XII, pp.597-605.
  28. Puthli, R., Ummenhofer, T., Bucak, O., Herion, S., Fleischer, O., Fischl, A., and Josat, O. (2010) Adaption and Extension of the Valid Design Formulae for Joints Made of High Strength Steels up to S690 for Cold-Formed and Hot-Rolled Sections, Schlussbericht CIDECT Projekt 5BT, CIDECT.
  29. CEN (2007) Eurocode 3: Design of Steel Structures - Part 1.12: Additional Rules for the Extension of EN 1993 up to Steel Grades S700, European Committee for Standardization, Brussels.
  30. Lipp, A. and Ummenhofer, T. (2014) Influence of Tensile Chord Stresses on the Strength of Circular Hollow Section Joints, Steel Construction, Ernst & Sohn, Vol.7, No.2, pp.126-132. https://doi.org/10.1002/stco.201410017
  31. Lipp, A. and Ummenhofer, T. (2015) Influence of Tensile Chord Stresses on the Strength of CHS X-Joints -Experimental and Numerical Investigations, Proc. 15th Int'l Symposium on Tubular Structures, Tubular Structures XV, pp.379-386.
  32. 이경구, 신용섭, 손은지(2015) 원형강관 X-이음 트러스접합부의 압축 주강관소성화 평가, 한국강구조학회논문집, 한국강구조학회, 제27권, 제5호, pp.447-454. (Lee, K.K., Sin, Y.S., and Son, E. J. (2015) Evaluation of Compressive Chord Plastification of Circular Hollow Section X-joint Truss Connection, Journal of Korean Society of Steel Construction, KSSC, Vol.27, No.5, pp.447-454 (in Korean).)
  33. 오창국, 박장호, 배두병(2016) 항만 및 해양구조용 고강도내식성 원형강관의 축방향 허용압축응력 산정, 한국강구조학회논문집, 한국강구조학회, 제28권, 제4호, pp.263-270. (Oh, C.K., Park, J.H., and Bae, D.B. (2016) Allowable Axial Stress Estimation of Corrosion Resistance Steel Tubes for Port and Offshore Structures, Journal of Korean Society of Steel Construction, KSSC, Vol.28, No.4, pp.263-270 (in Korean).)
  34. 김경식, 김미진(2017) 10MW급 풍력발전용 원형강관 멀티기둥타워의 부재유용도 개념설계, 한국강구조학회논문집, 한국강구조학회, 제29권, 제3호, pp.205-215. (Kim, K.S. and Kim, M.J. (2017) Member Utilization Concept Design for Hollow Circular Section Multi-column Tower Subjected to 10MW Level Wind Turbines, Journal of Korean Society of Steel Construction, KSSC, Vol.29, No.3, pp.205-215 (in Korean).)
  35. Lee, C.H., Han, K.H., Uang, C.M., Kim, D.K., Park, C.H., and Kim, J.H. (2013) Flexural Strength and Rotation Capacity of I-Shaped Beams Fabricated From 800-MPa Steel, Journal of Structural Engineering, ASCE, Vol.139, No.6, pp.1043-1058. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000727
  36. Kim, D.K., Lee, C.H., Han, K.H., Kim, J.H., Lee, S.E., and Sim, H.B. (2014) Strength and Residual Stress Evaluation of Stub Columns Fabricated from 800MPa High Strength Steel, Journal of Constructional Steel Research, Elsevier, Vol.102, pp.111-120. https://doi.org/10.1016/j.jcsr.2014.07.007
  37. Lu, L.H., De Winkel, G.D., Yu, Y., and Wardenier, J. (1994) Deformation Limit for the Ultimate Strength of Hollow Section Joints, Proc. Sixth Int'l Symposium on Tubular Structures, Tubular Structures VI, pp.341-347.

Cited by

  1. Structural behavior characteristics of jacket structure according to geometrical condition vol.30, pp.3, 2018, https://doi.org/10.7781/kjoss.2018.30.3.163
  2. Analytical Study of Compressive Strength of Equal-Width RHS X-Joint vol.31, pp.4, 2017, https://doi.org/10.7781/kjoss.2019.31.4.233