• Title/Summary/Keyword: High-cycle fatigue behavior

Search Result 94, Processing Time 0.022 seconds

Accelerated Ultrasonic Fatigue Testing Applications and Research Trends (초음파 가속피로시험 적용 사례 및 연구 동향)

  • Cho, In-Sik;Shin, Choong-Shig;Kim, Jong-Yup;Jeon, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.707-712
    • /
    • 2012
  • Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti-6Al-4V alloy. Hourglass-shaped specimens have been investigated in the range from $10^6$ to $10^9$ cycles at room temperature under completely reversed R = -1 loading conditions,. Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have beenfound to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

A Study on the Fatigue Crack Growth Behavior in Ti-6Al-4V Alloy(I) (Ti-6Al-4V의 피로균열성장거동에 관한 연구(I))

  • 우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • Fatigue crack growth behaviour of Ti-6A-4V alloy is investigated in air and salt solution environment at room temperature and $200^{\circ}C$. Fatigue crack growth rate is blown to be fast for the formation of corrosive product in hot salt environment. For the effect on corrosion fatigue crack growth behaviour of region II. fatigue crack growth rate in atmosphere had a little gap to both case, $200^{\circ}C$ and room temperature. However, it showed very fast tendency in salt corrosive atmosphere, and it was remarkably accelerated in $200^{\circ}C$ temperature salt environment. When $\Delta$K was approximately 30MPa(equation omitted), fatigue crack growth rate had a little difference between at room temperature and at $200^{\circ}C$ high temperature, however in case of salt corrosive environment the room temperature was 3.5 times Inter and $200^{\circ}C$ high temperature for 16 times than air environment respectively.

  • PDF

A Study on the Spring-Link Mechanism to Improve the Shock-proof Characteristics of Link (스프링 링크 메커니즘에서 부재의 내충격성 향상을 위한 연구)

  • 박상후;이부윤;안길영;오일성;윤영관;김대균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.777-781
    • /
    • 1997
  • One of the spring-link mechanisms, the air circuit breaker(ACB), was studied to improve the shock-proof characteristics of it. The low-cycle fatigue fracture phenomenon was occurred on the critical link, called h-link, of ACB for the repeated rapid closing and opening operations. To analyze the cause of failure, dynamic FE-analysis on the h-link part of ACB was accomplished with considered the velocity and acceleration of the links per time as boundary conditions, which were obtained by using ADAMS. Then, to reduce the maximum tensile stress on the h-link, three types of h-link were suggested and one of them was selected. Fmm this study, we suggested the process of analysis on the high-speed motion behavior part related low-cycle fatigue fractures.

  • PDF

Flexural Fatigue Behavior of High Performance Fiber Reinforced Cement Mortar (고인성 섬유보강 시멘트 모르터의 휨피로거동)

  • Lim, Nam-Hyoung;Lee, Chin-Ok;Jang, Sun-Jae;Ryu, Hyo-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.11-18
    • /
    • 2007
  • A laboratory investigation was conducted to characterize the flexural fatigue behavior of high performance fiber reinforced cement mortar. Five specimens for statics flexural test and fourteen specimens for the flexural fatigue test were made based on the fiber mixing ratio. Static flexural tests were firstly performed to obtain magnitudes of static failure loads and stress levels before flexural fatigue tests. The flexural fatigue behaviors were investigated based on the stress level and fiber mixing ratio. Also, the equations for the interrelation of the flexural fatigue stress levels with the number at loading cycle were proposed.

HIGH TEMPERATURE DEFORMATION BEHAVIOR OF AUSTENITIC STAINLESS STEELS FOR EXHAUST MANIFOLD (Exhaust Manifold 용 오스테나이트계 스테인리스 강의 고온 변형특성)

  • Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.314-317
    • /
    • 2007
  • Domestic automobile industries have been focusing their effort on development of exhaust manifolds using high temperature stainless steel. Exhaust manifolds fabricated with stainless steels can be categorized into tubular and cast ones. The former is usually manufactured by forming and welding process and the latter by vacuum casting process. In the present study, high temperature mechanical properties of 5 austenitic stainless steels, one was sand cast and the others vacuum cast, were investigated by performing a series of high temperature tensile tests and high temperature low cycle fatigue tests.

  • PDF

Fatigue Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 피로 거동)

  • Park, Tae-Hyo;Lee, Sang-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.37-40
    • /
    • 2005
  • Reinforced dual concrete beam (RDC beam) is the reformed system that improves the overall structural properties of beam by partially applying high performance steel fiber reinforced concrete (HPSFRC) in the lower tension part of conventional reinforced concrete beam (RC beam). Fatigue test was done to prove the structural superiority of RDC beam. As a result of fatigue test, the deflection of RDC beam was decreased obviously and the slope of number of cycle-deflection relation curve of RDC beam was increased gently in comparison with RC beam.

  • PDF

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

A study on the thermal-mechanical fatigue life prediction of 12 Cr steel (12 Cr 강의 열피로 수명단축에 관한 연구)

  • Ha, Jeong-Soo;Kim, Kun-Young;Ahn, Hye-Thon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.114-125
    • /
    • 1994
  • Fatigue behavior and life prediction method were presented for themal-mechanical and isothermal low cycle fatigue of 12 Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test from 350 .deg. C to 600 .deg. C and isothermal low cycle fatigue test at 600 .deg. C, 475 .deg. C, 350 .deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. Thermal-mechanical fatigue life predication was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase range partitioning method in a conservative way. By the way life prediction of thermal-mechanical fatigue by Taira's equivalent temperature method and spanning fartor method showed good agreement within out-of-phase thermal-mechanical fatigue.

  • PDF

Determination of Combined Hardening Model Parameters to Simulate the Inelastic Behavior of High-Strength Steels (고강도 강재의 비탄성 거동을 모사하기 위한 복합경화모델 파라미터 결정)

  • Cho, EunSeon;Cho, Jin Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2023
  • The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.

Effect of Local Strain on Low Cycle Fatigue using ESPI System (ESPI System을 이용하여 측정한 국부 변형률이 저사이클 피로수명에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Ki-Sung;Kwon, Jung-Min;Park, Seong-Mo;Kim, Beom-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.213-219
    • /
    • 2006
  • Low cycle fatigue cracks are mainly detected at discontinuous welded locations with high stresses under repeated cyclic static loads due to cargo leading and unloading. Theoretical and analytical methods have been used for evaluation of local stress and strain which have an effect on a prediction of fatigue life, but those have difficulties of considering stress concentration at notched location and complicated material behavior of welded joint or heat affected zone. Electronic speckle pattern interferometry(ESPI) system is nondestructive and non-contact measurement system which can get the relatively accurate full field strain at critical positions such as welded zone and structural discontinuous location. In this study, local strain was measured on welded cruciform joint by ESPI system and then low cycle fatigue test was performed. Effect of local strain on low cycle fatigue life was examined by measured values using ESPI system. Moreover, experimental fatigue life was compared with established S-N curves using theoretical local strain and stress calculated by Neuber's rule.