• Title/Summary/Keyword: High-carbon steel

Search Result 767, Processing Time 0.029 seconds

Critical Parameters to Improve the Fatigue Properties in the High Carbon Steel Wires (고 강도 극 세선의 피로 특성 향상을 위한 특정 인자 제시)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The governing parameters affecting the fatigue properties have been investigated experimentally in the high carbon steel wires with 0.94 wt.%C. In order to find the crucial factors, the advanced analysis techniques such as optical 3-D profiler, focused ion beam(FIB) and transmission electron microscope(TEM) were used. The two-type steel wires with different drawing strain were fabricated. The fatigue properties were measured by hunter rotating beam tester, specially designed for thin-sized steel wires. It was found that the fatigue properties of the steel wires with high drawing strain was higher than that with other wires because of low residual stress and high adhesion condition of brass coating layer.

Characteristics of dissimilar laser welding of high Mn steel (고Mn강의 이종 레이저용접 특성)

  • Jeong, Bo-Yeong;Han, Tae-Gyo;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.190-192
    • /
    • 2007
  • High Mn steel has been developed for automotive applications since the steel has an excellent combination of strength and ductility. However, from the viewpoint of welding, high Mn steel has a few problems related to its chemical composition. In this study, development of dissimilar laser welding technology has been investigated for expanding application of high Mn steel. The results have shown that dissimilar weld joint between high Mn steel and carbon steel has poor erichsen property using STS309L filler wire or not.

  • PDF

Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC (크롬질화처리한 저탄소강의 고분자 전해질 연료전지 분리판으로서의 표면특성)

  • Choi, Chang-Yong;Kang, Nam-Hyun;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • Separator of stack in polymer electrolyte membrane fuel cell (PEMFC) is high cost and heavy. If we make it low cost and lighter, it will have a great ripple. In this study, low carbon steel is used as base metal of separator because the cost of low carbon steel is very cheaper commercial metal material than stainless steels, which is widely used as separator. Low carbon steel has not a good corrosion resistance. In order to improve the corrosion resistance and electrolytic conductivity, low carbon steel needs to be surface treated. We made Chromium electroplated layer of $5{\mu}m$, $10{\mu}m$ thickness on the surface of low carbon steel and it was nitrided for 2 hours at $1000^{\circ}C$ in a furnace with 100 torr nitrogen gas pressure. Cross-sectional and surface microstructures of surface treated low carbon steel are investigated using SEM. And crystal structures are investigated by XRD. Interfacial contact resistance and corrosion tests were considered to simulate the internal operating conditions of PEMFC stack. The corrosion test was performed in 0.1 N $H_2SO_4$ + 2 ppm $F^-$ solution at $80^{\circ}C$. Throughout this research, we try to know that low carbon steel can be replaced stainless steel in separator of PEMFC.

Application of Press Quenching Technology to Automotive Drive Plate (프레스 퀜칭에 의한 자동차 드라이브 플레이트 제조에 관한 연구)

  • Jeong, W.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.588-594
    • /
    • 2011
  • A new manufacturing process is presented for automotive drive plate using a boron-containing carbon steel sheet, which is hot-formed and press quenched. Particular attention was given to the capability of the process in minimizing dimensional change.

The Effects of Cold Rolling on the Graphitization in Boron Addition High Carbon Steel (B첨가 고탄소강의 흑연화에 미치는 냉간압연의 영향)

  • Woo, K.D.;Park, Y.K.;Ryu, J.H.;Lee, C.H.;Ra, J.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • The graphitization is affected by the addition of small amount of the elements(such as Si, Al, Ni, B, Cr and Mn etc.) and the pre-treatment(such as cold rolling). Boron is well known element to accelerate the graphitization of cementite in high carbon steels. Also, cold rolling is known to accelerate the graphitization. But the graphitization nucleation mechanism by cold rolling is few reported. Therefore the effect of cold rolling in Fe-0.5%C-1.0%Si-0.47%Mn-0.005%B steel on the graphitization is investigated quantitatively using hardness test, optical microscope and scanning electron microscope, neutron induced microscopic radiography. The nucleation of graphite in cold-rolled Fe-0.5%C-1.0%Si-0.47%Mn-0.005%B steel is formed at void which is formed at pearlite/pearlite boundary by cold rolling. But the effect of cold rolling on graphitization in boron addition steel is more effective than that of no boron addition steel due to segregation of BN at void in boron addition steel.

  • PDF

The Effects of Microstrucutral Parameters on Bending Fatigue Properties of Heavily Drawn Pearlitic Steel Filaments used for Automotive Tires (타이어 보강용 고 탄소강 미세 강선의 굽힘 피로 성질에 미치는 미세 조직의 영향)

  • Yang Y. S.;Lim S. H.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.193-197
    • /
    • 2005
  • Influences of microstructure on high-cycle fatigue (HCF) limit of high carbon $(>0.7wt.\;\%)$ steel filaments used for tires have been investigated. A series of the fatigue tests was carried out depending on carbon content by using Hunter-type tester at a frequency of 60 Hz at a tension/compression stress of 900 to 1500 MPa. Microstructural changes of the filaments were identified in the lateral direction by using transmission electron microscopy (TEM). It was found that the mechanical properties, such as fatigue limit and tensile strength, were improved with increasing carbon content, which was mainly attributed to decreased lamellar spacing and cementite thickness. However, the fatigue ratio, which is defined as the ratio of the fatigue limit to the tensile strength, was reduced in a higher carbon range of 0.8 to $0.9\;wt.\%$, while the fatigue ratio was nearly constant in a lower carbon range of 0.7 to $0.8\;wt.\%$. Overall mechanical properties of the filaments, depending on carbon content, have been discussed in terms of the microstructural parameter change of lamellar spacing and cementite thickness. In addition, the variation of cementite morphology on the fatigue crack propagation of high carbon $(0.9wt.\;\%)$ filaments will be discussed.

  • PDF

Effect of Microstructure and Cold Reduction Ratio on Spheroidization Rate and Mechanical Properties of High Carbon Steel (고탄소강 열연판재의 미세조직과 냉간압하율에 따른 구상화 속도 및 기계적 특성)

  • Lee, K.D.;Lee, S.Y.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.382-385
    • /
    • 2008
  • In the present study, the effect of cold reduction ratio on the spheroidization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $850^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ and $670^{\circ}C$ for 10 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure and coarse pearlite structure. Cold rolling was conducted on the sheets by reduction ratios of 20, 30, and 40 % and heat treatment for spheroidization was carried out at $720^{\circ}C$ for the various time intervals from 1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

Spheroidization Behavior of SK85 High Carbon Steel (SK85 고탄소강의 구상화 거동)

  • Ha, T.K.;Kim, K.J.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.350-353
    • /
    • 2009
  • In the present study, the effect of initial microstructure, cold reduction ratio, and annealing temperature on the spherodization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $800^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ for 5 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure. Cold rolling was conducted on the sheets of fine pearlite by reduction ratios of 20, 30, and 40% and heat treatment for spheroidization was carried out at 600 and $720^{\circ}C$ for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel (열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향)

  • Kang, C.Y.;Kwon, M.K.;Kim, C.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.