• Title/Summary/Keyword: High-capacity

Search Result 8,087, Processing Time 0.039 seconds

A Study on the Recreation Carrying Capacity of Lawn Areas in Parks(I) -Estimation of treading times criteria based on the tolerence of the turf to treading pressure- (공원잔디공간의 『레크레이션』 수용능력에 관한 연구(I) -잔디에 미치는 답압의 영향 및 수용능력의 답압회수 기준설정-)

  • 엄붕훈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.20 no.1
    • /
    • pp.53-68
    • /
    • 1992
  • This study was carried out to estimate the recreation carrying capacity of lawn areas in parks. Recreation carrying capacity in this study is composed of two parts, ecological carrying capacity and psychological carrying capacity. As the first part, this paper deals with the treading times criteria based on the tolerence of the turf to treading pressure. The plant material used for this study was Zoysia japonica, and the treading experiment was done in the experimental fields in Kyungju and Suwon, Korea. The major results of the first part of the study are summarized as follow: 1. As shown in annual change of the growth of the turf, The growth of turt grass was represented by the number of leaf. 2. The tolerance to treading was not significantly different by the time of treading treatment. And the tolerance varies depending on growth rate of grasses, which showed significant relationship with precipitations. 3. From the result of different numbers of simulated treading treatment, the damage of the turf was increased by the increase of the frequency of treading. And the damage was very serious within short period(about 20 days) in high frequency(over 20 times/day) of treading treatment. But low frequency(1∼3times/day) of treading shows good effects on the growth of the turf. 4. The criteria of treading number per day for each carrying capacity level are estimated as 7 times/day for optimum carrying capacity, 13 times/day for standard carrying capacity, and 20 times/day for critical carrying capacity.

  • PDF

Effects of Alloying Elements(Sb, Ti) on Damping Capacity and Mechanical Properties In 3.6%C Gray Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 Sb 및 Ti 첨가의 영향)

  • Kim, J.C.;Han, D.W.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.330-335
    • /
    • 2001
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which Is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Sb on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni gray cast iron. At 0.02%Sb, specific damping capacity showed the maximum value, and decreased with further increase in Sb content. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ti on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni-0.02%Sb gray cast iron. Specific damping capacity increased with increase in Ti content. Graphite length also showed same behavior. Tensile strength increased with Ti content due to refinement of pearlite. In the case of 0.14%Ti addition in 3.6%C-0.2%Ni-0.02%Sb cast iron, specific damping capacity and tensile strength was 36% and 25 $kgf/mm^2$ which are higher than 32% and 15 $kgf/mm^2$ at 3.6%C-0.2%Ni cast iron respectively.

  • PDF

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

Effect of Kyungohkgo on Aerobic Capacity and Anti-fatigue in High School Soccer Players (경옥고 섭취가 고등학교 축구선수의 운동수행능력 향상 및 피로 회복에 미치는 영향)

  • Kim, Dong-Gun;Park, Won-Hyung;Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.934-944
    • /
    • 2011
  • This study was designed to investigate the effects of Kyungohkgo to improve aerobic capacity and eliminate exercise-induced fatigue in high school soccer players. Twenty four subjects were participated and randomly assigned into two groups [KG, Kyungohkgo group (n=12); PG, Placebo control group (n=12)]. Two groups were completed treadmill exercise protocol using graded exercise test at before and after experimental treatment of 4 weeks. The $VO_2$max and endurance time were measured by gas analysis and heart rate (HR) was measured by polar system at pre, post 0, post 5, post 15, post 30 and post 60 minutes. Blood samples were collected to analyze blood components. 1. The $VO_2$max was significant increased in the group of after intake Kyungohkgo compared to the group of after intake placebo (p<.05). 2. The HR was significant decreased in the group of after intake Kyungohkgo compared to the group of after intake placebo during recovery time at post 5 mins(p<.05), 30 mins(p<.01), 60 mins(p<.01). 3. Weight, body mass index, percent body fat, anaerobic threshold, endurance time, blood lactate concentrate, lactate dyhydrogenase, creatine kinase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, other energy sources(total-cholesterol, triglyceride, high density lipoprotein-cholesterol, low density lipoprotein-cholesterol, creatinine) and electrolyte (Na, K, Cl) were shown no significant differences between groups. These results suggested that Kyungohkgo can be used as ergogenic aids to improve aerobic capacity and eliminate exercise-induced fatigue.

Seismic behavior of composite walls with encased steel truss

  • Wu, Yun-tian;Kang, Dao-yang;Su, Yi-ting;Yang, Yeong-bin
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.449-472
    • /
    • 2016
  • This paper studies the seismic behavior of reinforced concrete (RC) walls with encased cold-formed and thin-walled (CFTW) steel truss, which can be used as an alternative to the conventional RC walls or steel reinforced concrete (SRC) composite walls for high-rise buildings in high seismic regions. Seven one-fourth scaled RC wall specimens with encased CFTW steel truss were designed, manufactured and tested to failure under reversed cyclic lateral load and constant axial load. The test parameters were the axial load ratio, configuration and volumetric steel ratio of encased web brace. The behaviors of the test specimens, including damage formation, failure mode, hysteretic curves, stiffness degradation, ductility and energy dissipation, were examined. Test results indicate that the encased web braces can effectively improve the ductility and energy dissipation capacity of RC walls. The steel angles are more suitable to be used as the web brace than the latticed batten plates in enhancing the ductility and energy dissipation. Higher axial load ratio is beneficial to lateral load capacity, but can result in reduced ductility and energy dissipation capacity. A volumetric ratio about 0.25% of encased web brace is believed cost-effective in ensuring satisfactory seismic performance of RC walls. The axial load ratio should not exceed the maximum level, about 0.20 for the nominal value or about 0.50 for the design value. Numerical analyses were performed to predict the backbone curves of the specimens and calculation formula from the Chinese Code for Design of Composite Structures was used to predict the maximum lateral load capacity. The comparison shows good agreement between the test and predicted results.

An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Kyong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • The tension type joint is a mechanically very efficient connection method, as it directly uses the load capacity of base metal or high tension bolt, the reduction of the number of drilling hole and fastening and the fatigue resistance. It is applied to the joint of girder and cross beam, horizontal joints of towers, beam to column joints, the secondary member joints of deck floor ends, and brackets. In this paper, static load tests for the T-type tension joint were conducted to investigate the structural behavior of the joint. The parameters were bolt diameter, flange thickness, and the reduction of clamping force of the joint. The failure modes and load capacity of joints and the effects of flange thickness, bolt diameter and clamping force were investigated.

Development of active discharge tester for high capacity lithium-ion battery (대용량 리튬 이온 배터리용 Active 방전시험기의 개발)

  • Park, Joon-Hyung;Yunana, Gani Dogara;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode

  • Um, Ji Hyun;Kim, Hyunwoo;Cho, Yong-Hun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.92-98
    • /
    • 2020
  • SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng;Jiang, Haibo;Chen, Gongfa;Dong, Xiaotong;Shao, Tengfei
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.837-851
    • /
    • 2020
  • This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

Structural Evolution of Layered $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ upon Electrochemical Cycling in a Li Rechargeable Battery

  • Hong, Ji-Hyeon;Seo, Dong-Hwa;Kim, Seong-Uk;Gwon, Hyeok-Jo;Park, Yeong-Uk;Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Recently $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ has been consistently examined and investigated by scientists because of its high lithium storage capacity, which exceeds beyond the conventional theoretical capacity based on conventional chemical concepts. Consequently, $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ is considered as one of the most promising cathode candidates for next generation in Li rechargeable batteries. Yet the mechanism and the origin of the overcapacity have not been clarified. Previously, many authors have demonstrated simultaneous oxygen evolution during the first delithiation. However, it may only explain the high capacity of the first charge process, and not of the subsequent cycles. In this work, we report a clarified interpretation of the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$, which is the key element in understanding its anomalously high capacity. We identify how the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ occurs upon the electrochemical cycling through careful study of electrochemical profiles, ex-situ X-ray diffraction (XRD), HR-TEM, Raman spectroscopy, and first principles calculation. Moreover, we successfully separated the structural change at subsequent cycles (mainly cation rearrangement) from the first charge process (mainly oxygen evolution with Li extraction) by intentionally synthesizing sample with large particle size. Consequently, the intermediate states of structural evolution could be well resolved. All observations made through various tools lead to the result that spinel-like cation arrangement and lithium environment are created and embedded in layered framework during repeated electrochemical cycling.

  • PDF