• Title/Summary/Keyword: High-capacity

Search Result 8,087, Processing Time 0.047 seconds

Parametric Study on the Capacity of Vacuum Pump for Tube Structure (튜브열차 구조물의 진공 펌프 용량에 관한 파라메타 연구)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.516-520
    • /
    • 2010
  • Parametric study has been conducted to calculate the capacity of vacuum pump system that will be used to maintain the pressure of the tube structure under atmosphere level. Recently many railroad researchers pay attention to the tube train system as one of the super high speed transportation system. To achieve the super high speed, the inside of tube system should be maintained at low pressure level. In the low pressure environment, it is well known that air resistance of train is drastically decreased. Vacuum pump system will be used to make low pressure state for tube structure, exhaust the leakage air and supplement additional vacuum pumping. As results of these studies, we get the lump capacity of vacuum pump for various parameters. These results can be applied to analyze the effects of the reduction of air resistance.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

Estimation of Effects of Underwater Acoustic Channel Capacity Due to the Bubbles in the High Frequency Near the Coastal Area

  • Zhou, Guoqing;Shim, Tae-Bo;Kim, Young-Gyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.69-76
    • /
    • 2008
  • Measurements of bubble size and distribution in the surface layer of the sea, wind speed, and variation of ocean environments were made continually over a four-day period in an experiment conducted in the South Sea of Korea during 17-20 September 2007. Theoretical background of bubble population model indicates that bubble population is a function of the depth, range and wind speed and bubble effects on sound speed shows that sound speed varies with frequency. Observational evidence exhibited that the middle size bubble population fit the model very well, however, smaller ones can not follow the model probably due to their short lifetime. Meanwhile, there is also a hysteresis effect of void fraction. Observational evidence also indicates that strong changes in sound speed are produced by the presence of swarms of micro bubbles especially from 7 kHz to 50 kHz, and calculation results are consistent with the measured data in the high frequency band, but inconsistent in the low frequency band. Based on the measurements of the sound speed and high frequency transmission configuration in the bubble layer, we present an estimation of underwater acoustic channel capacity in the bubble layer.

A study on torque measuring technique for track drive unit of earthmoving equipment with very large capacity (대형 건설장비용 주행유닛의 토크 측정기술에 관한 연구)

  • Lee, Yong-Bum;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.97-103
    • /
    • 2009
  • Since a demand for an extensive range of earthmoving equipment like a hydraulic excavator with a capacity of 85tons has been asked in construction fields, a performance of its track drive unit has to be verified experimentally. Among the verification of the performances, a torque measurement is at issue, in which a torque meter is utilized widely. However, the very large scaled torque meter is necessary when a discharged torque from the track drive unit is increased significantly. In addition, the price for experimental set-up of a torque meter is too high due to its limitation of the geometry such as long length, and a break down in operation occurs frequently. In this study, to measure a high torque up to 200,000Nm, a new technique was proposed as an alternative of conventional measurement by using a torque meter. The new technique enables to measure the high torque stably in a compact space via a torque arm and two load cells. The experimental results showed a propriety of the proposed torque measuring technique for a track drive unit with very large capacity.

  • PDF

Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery (3D-foam 구조의 구리-주석 합금 도금층을 음극재로 사용한 리튬이온배터리의 전기화학적 특성 평가)

  • Jung, Minkyeong;Lee, Gibaek;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.

Characteristic Measurement for Ready-Deployed Optical Cable and Simulation for SDH and WDM System Existing Conditions (기포설된 광케이블 특성측정과 이 선로조건에 대한 SDH 및 DWDM 광전송장치 전송특성측정과 시뮬레이션)

  • 이성원;김영범
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.121-138
    • /
    • 2001
  • Due to large demand for high speed and great capacity for data transfer, WDM, which uses the wavelength division multiplexing technique, is known as alternative way to satisfy those demand for its flexible network operation and management, easy network expansion with existing networks, and enhancement of efficient data transfer rate. For these reasons, a new high capacity WDM optical communication network plan was established. Therefore, the quality of currently deployed optical cables with 81.6 km in length should be assessed to ensure if high capacity WDM system could be implemented on existing optical cables. Two important characteristic parameters, Transfer Loss and PMD (Polarization Mode Dispersion), were measured to evaluate quality of existing optical cable. Transfer Loss was measured at 0.244 dB per kilometer, which is lower than the design standard value at 0.275 dB/km. The measured PMD value gave at 0.030ps/km, and it, therefore, satisfies the value recommended by ITU-T (International Telecommunication Union-T) of 0.5ps/km. In addition, the transfer characteristic for existing 2.5 Gbps and 10 Gbps system were measured and evaluated, and the results showed that error-free transfer is very much feasible. Computer simulation for DWDM system, which is likely be a future backbone network in Korea, to assess the transfer characteristic using the same condition employed for 2.5 Gbps and 10 Gbps was carried out as well. The simulation verified that a stable network operation and reliable service could be provided.

  • PDF

Determining Appropriate Capacity on Installing Photovoltaic System at Deteriorated Educational Facilities

  • Lhee, Sang Choon;Choi, Young Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2014
  • With high acknowledgements of environmental conservation and energy saving, many architectural technologies using renewable energy have been recently applied at buildings which take about 20% of total energy consumption. Among renewable energy sources, the photovoltaic is considered as the most highly potential one due to advantages of infiniteness and cleanliness. Also, projects to install renewable energy systems have been continuously performed at deteriorated educational facilities as energy efficient remodeling projects or green school projects by the Korean government. This paper proposes appropriate capacities by school level on installing photovoltaic systems at deteriorated school buildings, based on the balance of annual electricity power demand and supply between buildings and systems. Using the Visual DOE program and Merit program, the appropriate installment capacity of photovoltaic system turned out be 40kWp at elementary school building and 60kWp at middle and high ones. In addition, annual energy use proved to be reduced by 20.2% at elementary school, 26.9% at middle school, and 21.0% at high school by installing photovoltaic systems with the appropriate capacities.

Normalised rotation capacity for deformability evaluation of high-performance concrete beams

  • Zhou, K.J.H.;Ho, J.C.M.;Su, R.K.L.
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.269-287
    • /
    • 2010
  • High-strength concrete (HSC) is becoming more popular in the construction of beams and columns of tall buildings because of its higher stiffness and strength-to-weight ratio. However, as HSC is more brittle than normal-strength concrete (NSC), it may adversely affect the flexural ductility and deformability of concrete members. Extended from a series of theoretical study conducted on flexural ductility of concrete beams, the authors would in this paper investigate the effects of some critical factors including the degree of reinforcement, confining pressure, concrete and steel yield strength on the flexural deformability of NSC and HSC beams. The deformability, expressed herein in terms of normalised rotation capacity defined as the product of ultimate curvature and effective depth, is investigated by a parametric study using nonlinear moment-curvature analysis. From the results, it is evident that the deformability of concrete beams increases as the degree of reinforcement decreases and/or confining pressure increases. However, the effects of concrete and steel yield strength are more complicated and dependent on other factors. Quantitative analysis of all these effects on deformability of beams has been carried out and formulas for direct deformability evaluation are developed. Lastly, the proposed formulas are compared with available test results to verify its applicability.

Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery

  • Doh, Chil-Hoon;Shin, Hye-Min;Kim, Dong-Hun;Chung, Young-Dong;Moon, Seong-In;Jin, Bong-Soo;Kim, Hyun-Soo;Kim, Ki-Won;Oh, Dae-Hee;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.309-312
    • /
    • 2008
  • Two different anode composite materials comprising of Fe, Cu and Si prepared using high energy ball milling (HEBM) were explored for their capacity and cycling behaviors. Prepared powder composites in the ratio Cu:Fe:Si = 1:1:2.5 and 1:1:3.5 were characterized through X-Ray diffraction (XRD) and scanning electron microscope (SEM). Nevertheless, the XRD shows absence of any new alloy/compound formation upon ball milling, the elements present in Cu(1)Fe(1)Si(2.5)/Graphite composite along with insito generated Li2O demonstrate a superior anodic behavior and delivers a reversible capacity of 340 mAh/g with a high coulombic efficiency (98%). The higher silicon content Cu(1)Fe(1)Si(3.5) along with graphite could not sustain capacity with cycling possibly due to ineffective buffer action of the anode constituents.

Method of Minimizing ESS Capacity for Mitigating the Fluctuation of Wind Power Generation System (풍력발전의 출력 변동 저감을 위한 ESS 최소용량 산정기법)

  • Kim, Jae-Hong;Kang, Myeong-Seok;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.119-125
    • /
    • 2011
  • In this paper, we have studied about minimizing the Energy Storage System (ESS) capacity for mitigating the fluctuation of Wind Turbine Generation System (WTGS) by using Electric Double Layer Capacitor (EDLC) and Battery Energy Storage System (BESS). In this case, they have some different characteristics: The EDLC has the ability of generating the output power at high frequency. Thus, it is able to reduce the fluctuation of WTGS in spite of high cost. The BESS, by using Li-Ion battery, takes the advantage of high energy density, however it is limited to use at low frequency response. To verify the effectiveness of the proposed method, simulations are carried out with the actual data of 2MW WTGS in case of worst fluctuation of WTGS is happened. By comparing simulation results, this method shows the excellent performance. Therefore, it is very useful for understanding and minimizing the ESS capacity for mitigating the fluctuation of WTGS.