• Title/Summary/Keyword: High-capacity

Search Result 8,087, Processing Time 0.036 seconds

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

The Influence of Mental Capacity and Understanding of the Oxidation Reduction Concepts on Senior and Science High School Students' Completion of the Balancing Redox Equations (일반고와 과학고 학생들의 정신용량과 산화 환원 개념의 이해도가 산화 환원 반응식 완결에 미치는 영향)

  • Choe, Byeong-Sun;Kim, Chung-Ho;Lee, Sang-Gwon
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.345-353
    • /
    • 2002
  • The purpose of this study was to analyze the influence of mental capacity and understanding of the oxi-dation-reduction concepts on the completion of the balancing redox equations. Participants were 92 senior high school students and 57 science high school students. Tests were conducted to measure the mental capacity, the understanding of the oxidation-reduction concepts and the completion of the balancing redox equations and the influence on the per-formance was analyzed. The performance of the senior high school students increased as the mental capacity increased, but the performance of science high school students did not change by mental capacity. Most of senior high school stu-dents couldn't understand the oxidation-reduction concepts well. Most of science high school students, however, under-stood the concepts completely and partially. The students who had a good understanding of the oxidation-reduction concepts showed a good performance for both senior and science high school students, regardless of the problem pattern.

A New Information Data Hiding Scheme based on Pattern Information of Secret Data (비밀데이터의 패턴정보에 기반한 새로운 정보은닉 기법)

  • Kim, Ki-Jong;Shin, Sang-Ho;Yoo, Kee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.526-539
    • /
    • 2012
  • This paper proposes a high capacity data hiding method using high frequence secret data indexing algorithm. Many novel data hiding methods based on LSB and PVD methods were presented to enlarge hiding capacity and provide an imperceptible quality. In this paper, first, calculating data iteration frequency of the secret message and make up the high frequency data index matrix (HFDT) using high frequence data's location information. Next, HFDT uses to that data hiding process on the cover image and recovering process on the stego image. The experimental results demonstrate the efficiency of the proposed high frequency secret data indexing method. For the data hiding method, experiments are conducted for four cases: 2 pattern secret data (2PD), 4 pattern secret data (4PD), 8 pattern secret data (8PD) and higher pattern secret data (HPD). When comparing the proposed method with other data hiding methods, for the HPD case, the results show that the proposed method has a good PSNR and more capacity, and for the other case, the results show that the proposed method has a higher PSNR and larger capacity.

Reliability-Based Safety and Capacity Evaluation of High-Speed Railroad Bridges (신뢰성에 기초한 고속철도 교량의 안전도 및 내하력평가)

  • 조효남;곽계환
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-143
    • /
    • 1997
  • In Korea, the construction of the first high-speed railroad on the Seoul-Pusan Corridor has already started 3 years ago, in the paper, an attempt is made to develop reliability-based safety and capacity evaluation models for the computer-aided maintenance of the high-speed railroad bridges. The strength limit state models of PC railroad bridges for reliability analysis encompass both the single failure mode such as bending or shear strength and the combined interaction equations which simultaneously take into account flexures, shear and torsion. Then, the actual load carrying capacity and the realistic safety of bridges are evaluated using the system reliability-based equivalent strength, and the results are compared with those of the element reliability based or conventional methods. It is concluded that the proposed models may be appropriately applied in practice for the realistic assessment of safety and capacity of high-speed railroad bridges.

  • PDF

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Study on Sedimentation in Reservoir (저수지의 퇴사에 관한 연구)

  • 류희정;김치원
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.67-75
    • /
    • 1976
  • With 9 existng reservoirs selected in the Sab-Gyo River Basin, the sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoirs capacity. The reservoirs has a total drainage area of 6,792 ha, with a total capacity of 1,204.09 ha-m, and are short of water supply due to reduction of reservoirs capacity. Annual sedimention in the reservcire is relation to the drainage area, the mean of annual rain fall, and the slop of drainage area. The results of obtained from the investigation are summarized as follow; (1) A sediment deposition rate is very high, being about $9.19{m}^3/ha$ of drainage area, and resulting in the average decrease of reservoir capacity by 19.1%. This high rate of deposition could be mainly attributed to the serve denvdation of forests due to disor derly cuttings of tree. (2) An average unit storage of 415.8mm as the time of initial construation is decreesed to 315.59mm at present, as resultting, we could'nt supply water at 566.24ha. (3) A sediment deposition rate as a relation to the capacity of unit drainage area is as follow; $Qs=1.43 (c/a)^{0.531}$ (4) A sediment deposition rate as a relation to the mean of annval rainfall is as follow; $Qs=672.61 p^{0.024}$ (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow; $Qs=267.21 S^{0.597}$

  • PDF

On Determining the Size and the Timing of the Capacity Expansion in PV Module Manufacturing: Management Flexibility in Real Options Model (태양광모듈 생산 증설투자에 대한 의사결정: 실물옵션모형에 의한 경영유연성 가치 분석)

  • Kim, Kyung-Nam;SonU, Suk-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.18-27
    • /
    • 2011
  • Management flexibility to adapt its future actions in response to altered future market conditions can expand the value of an investment opportunity by improving its upside potential without the change in the downside losses. Module manufacturers in solar industry continuously have to decide how much and when its production capacity should be expanded with regards to the demand in the global markets. Either over- or under-investment can cause sunk and/or opportunity costs to the module manufacturers. Option of exercising the additional investments only on favorable opportunities can increase total value of the investment. This paper analyzes the case which shows that the expansion of production capacity with more expandibility can have more value than the rigid plan of capacity expansion. The expansion option value is equivalent to KRW 38.286 billion, thus switching the negative NPV of the initial investment opportunity into the positive value. High volatility and the high growth in the cashflows as the major business features of the renewable energy provide condition where real options can play the crucial role in increasing the investment value as well as in determining the size and timing of capacity expansion in the course of capital budgeting process.

($H_{2}S$ Adsorption Capacity of $Na_{2}CO_{3}$ and $KIO_{3}$ Impregnated Activated Carbon (($Na_{2}CO_{3}$$KIO_{3}$ 첨착 왕겨활성탄의 $H_{2}S$ 흡착특성)

  • Kim, Jun-Suk;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.213-221
    • /
    • 2002
  • Activated carbons with high surface area of 2,600 $m^{2}/g$ and high pore volume of 1.2 cc/g could be prepared by KOH activation of rice hulls at a KOH:char ratio of 4:1 and $850^{\circ}C$. In order to increase the adsorption capacity of hydrogen sulfide, which is one of the major malodorous component in the waste water treatment process, various contents of $Na_{2}CO_{3}$ and $KIO_{3}$ were impregnated to the rice-hull activated carbon. The impregnated activated carbon with 5 wt.% of $Na_{2}CO_{3}$ showed improved $H_{2}S$ adsorption capacity of 75 mg/g which is twice of that for the activated carbon without impregnation and the impregnated activated carbon with 2.4 wt.% of $KIO_{3}$ showed even higher $H_{2}S$ adsorption capacity of 97 mg/g. The improvement of $H_{2}S$ adsorption capacity by the introduction of those chemicals could be due to the $H_{2}S$ oxidation and chemical reaction with impregnated materials in addition to the physical adsorption of activated carbon.

A Perceptually-Adaptive High-Capacity Color Image Watermarking System

  • Ghouti, Lahouari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.570-595
    • /
    • 2017
  • Robust and perceptually-adaptive image watermarking algorithms have mainly targeted gray-scale images either at the modeling or embedding levels despite the widespread availability of color images. Only few of the existing algorithms are specifically designed for color images where color correlation and perception are constructively exploited. In this paper, a new perceptual and high-capacity color image watermarking solution is proposed based on the extension of Tsui et al. algorithm. The $CIEL^*a^*b^*$ space and the spatio-chromatic Fourier transform (SCFT) are combined along with a perceptual model to hide watermarks in color images where the embedding process reconciles between the conflicting requirements of digital watermarking. The perceptual model, based on an emerging color image model, exploits the non-uniform just-noticeable color difference (NUJNCD) thresholds of the $CIEL^*a^*b^*$ space. Also, spread-spectrum techniques and semi-random low-density parity check codes (SR-LDPC) are used to boost the watermark robustness and capacity. Unlike, existing color-based models, the data hiding capacity of our scheme relies on a game-theoretic model where upper bounds for watermark embedding are derived. Finally, the proposed watermarking solution outperforms existing color-based watermarking schemes in terms of robustness to standard image/color attacks, hiding capacity and imperceptibility.

Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal(tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube concrete compressive strength (32 MPa to 48 MPa).The span of the beam has been kept constant at 1000 mm with100 mm overhang on either side of the supports. The result of this study shows that the load transfer capacity of transfer (deep) beam with distributed longitudinal reinforcement is increased significantly. Also, the vertical shear reinforcement is more effective than the horizontal reinforcement in increasing the shear capacity as well as to transform the brittle mode of failure in to the ductile mode of failure. It has been observed that the orthogonal web reinforcement is highly influencing parameter to generate the shear capacity of transfer beams as well as its failure modes. Moreover, the results from the experiments have been processed suitably and presented an analytical model for design of transfer beams in high-rise buildings for estimating the shear capacity of beams.