• Title/Summary/Keyword: High-aspect-ratio

Search Result 950, Processing Time 0.037 seconds

CVD and Sputtering-reflow Copper Metalization Technique with CMP

  • Hoshino, M.;Furumura, Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.102-107
    • /
    • 1995
  • We review the copper CVD line, via fill properties, and CMP line resistance. With CVD, trenches and vias with high aspect ratio(above 3) can be filled completely. Sputtering-reflow technique, a new method to filling copper into lines, is also reviewed to compare the CVD process.

  • PDF

Experimental and analytical study of squat walls with alternative detailing

  • Leonardo M. Massone;Cristhofer N. Letelier;Cristobal F. Soto;Felipe A. Yanez;Fabian R. Rojas
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2024
  • In squat reinforced concrete walls, the displacement capacity for lateral deformation is low and the ability to resist the axial load can quickly be lost, generating collapse. This work consists of testing two squat reinforced concrete walls. One of the specimens is built with conventional detailing of reinforced concrete walls, while the second specimen is built applying an alternative design, including stirrups along the diagonal of the wall to improve its ductility. This solution differs from the detailing of beams or coupling elements that suggest building elements equivalent to columns located diagonally in the element. The dimensions of both specimens correspond to a wall with a low aspect ratio (1:1), where the height and length of the specimen are 1.4 m, with a thickness of 120 mm. The alternative wall included stirrups placed diagonally covering approximately 25% of the diagonal strut of the wall with alternative detailing. The walls were tested under a constant axial load of 0.1f'cAg and a cyclic lateral displacement was applied in the upper part of the wall. The results indicate that the lateral strength is almost identical between both specimens. On the other hand, the lateral displacement capacity increased by 25% with the alternative detailing, but it was also able to maintain the 3 complete hysteretic cycles up to a drift of 2.5%, reaching longitudinal reinforcement fracture, while the base specimen only reached the first cycle of 2% with rapid degradation due to failure of the diagonal compression strut. The alternative design also allows 46% more energy dissipation than the conventional design. A model was used to capture the global response, correctly representing the observed behavior. A parametric study with the model, varying the reinforcement amount and aspect ratio, was performed, indicating that the effectiveness of the alternative detailing can double de drift capacity for the case with a low aspect ratio (1.1) and a large longitudinal steel amount (1% in the web, 5% in the boundary), which decreases with lower amounts of longitudinal reinforcement and with the increment of aspect ratio, indicating that the alternative detailing approach is reasonable for walls with an aspect ratio up to 2, especially if the amount of longitudinal reinforcement is high.

Numerical Analysis on Structural Behavior of Column-Slab Connection (기둥-슬래브 접합부의 구조거동에 관한 수치해석)

  • Lee, Joo-Ha;Lim, Kwang-Mo;Lee, Byung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • In this study, the structural performance of high strength concrete (HSC) column-normal strength concrete (NSC) slab connection was investigated according to confinement effects, aspect ratio (h/c) and strength ratio ($f^{\prime}_{cc}/f_{cs}$). The study was conducted by using finite element analysis. To verify the analysis methods, the experiments and analyses results were compared. The specimens were classified by connection types including interior column, edge column, corner column and isolated column. As a result, ultimate strength of interior column was larger than other specimens. Also, the axial stresses of connection were decreased when the aspect ratio was increased. As the strength ratio between column and slab was increased, the ultimate strength of specimens was also increased until the strength ratio was reached to 1.83.

Self-Sensing and Interfacial Property of Carbon Nanofiber/Epoxy Composites with Different Aspect Ratios (형상비가 다른 탄소나노섬유/에폭시 복합재료의 자체 감지능 및 계면특성)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Kim, Sung-Ju;Wang, Zuo-Jia;Park, Joung-Man;Yoon, Dong-Jin
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2008
  • Self-sensing was evaluated for carbon nanofiber (CNF)/epoxy composites with two different aspect ratios via electro-micromechanical technique and wettability test. Volumetric electrical resistance was measured to evaluate the comparative dispersion degree indirectly and it decreased due to the increase of electric contacts with increasing CNF concentration. The dispersion degree was evaluated indirectly by calculating coefficient of variation (COV) of volumetric electrical resistance. The CNF type A with a high aspect ratio showed better self-sensing than the case of CNF type B with a short aspect ratio. The CNF type B/epoxy composite showed little self-sensing at a concentration higher than 2 vol% probably due to poor dispersion. The apparent modulus of CNF type B was higher than that of CNF type A due to the orientation effect and the high surface area. The thermodynamic work of adhesion was consistent with the result of apparent modulus.

  • PDF

Seismic Behavior of Slender Coupling Beams Constructed with High-Performance Fiber Reinforced Cementitious Composite (고성능 섬유 보강 시멘트 복합체(HPFRCC)를 적용한 세장한 연결보의 내진거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak;Cho, Young Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.271-278
    • /
    • 2013
  • The hysteretic behavior of diagonal reinforced coupling beams is excellent during earthquakes. However, construction of the diagonal reinforced coupling beams is difficult due to complex reinforcement details required by current code procedures (ACI 318-11). Due to the detail requirement, reinforcement congestion and interference among transverse reinforcement always occur during construction field. When the aspect ratio of the beam is large, the interference of reinforcement becomes more serious. The objective of this paper is to simplify the reinforcement details of slender coupling beams by reducing transverse reinforcement around the beam perimeter. For this purpose, high- performance fiber reinforced cementitious composites are used for making coupling beams. Experiments were conducted using three specimens having aspect ratio 3.5. Test results showed that HPFRCC coupling beams with half the transverse reinforcement required by ACI 318-11 provided identical seismic capacities to the corresponding coupling beams having requirement satisfying the requirement specified in ACI 318-11.