• Title/Summary/Keyword: High-Voltage Capacitor

Search Result 856, Processing Time 0.027 seconds

Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor (친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템)

  • Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application (펄스파워용 고전압 고에너지밀도 커패시터 개발)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

Application of A High Voltage Capacitor Charger to Nanosize Powder Production

  • Jeong I.W.;Rim G.H.;Jung Y.H.;Kim K.S.;Lee H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.727-730
    • /
    • 2001
  • Electrical wire explosion (EWE) is characterized by great current density and rapid metal heating, which make itself an ideal tool for nano-materials manufacturing technology. The EWE requires a high voltage electric-energy source. In the current experimental set-up a high voltage capacitor is used for the purpose. Hence, a power supply that is capable of charging the capacitor to a target voltage is required. One of the special requirements is the precise controllability of the stored energy level in the capacitor. Through this study a high voltage capacitor charger using a series resonant converter technology has been developed for the production of nanosize powder. A load capacitor of $32{\mu}F$ can be charged up to 20kV by the developed capacitor charger and discharged through a gap switch and a copper wire.

  • PDF

Bi-polar High-voltage Pulse Generator Using Semiconductor switches (반도체 스위치를 이용한 양방향 고압 펄스 발생기)

  • Kim J.H.;Ryu M.Y.;Jung I.W.;Shenderey S.;Kim J.S.;Rim G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.291-293
    • /
    • 2003
  • A semiconductor switch-based fast hi-polar high voltage pulse generator is proposed in this paper The proposed pulse system is made of a thyristor based-rectifier, DC link capacitor, a push-pull resonant inverter, a high voltage transformer. secondary capacitor, a high voltage IGBT & diode stacks, and a variable capacitor. The proposed system makes hi-polar high voltage sinusoidal waveform using resonance between leakage inductance of the transformer and secondary capacitor and transfers energy to output load at maximum of the secondary capacitor voltage. Compared to previous hi-polar high voltage pulse power supply using nonlinear transmission line, the proposed pulse power system using only semiconductor switches has simple structure and gives high efficiency

  • PDF

An Efficient High Voltage Level Shifter using Coupling Capacitor for a High Side Buck Converter

  • Seong, Kwang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.125-134
    • /
    • 2016
  • We propose an efficient high voltage level shifter for a high side Buck converter driving a light-emitting diode (LED) lamp. The proposed circuit is comprised of a low voltage pulse width modulation (PWM) signal driver, a coupling capacitor, a resistor, and a diode. The proposed method uses a property of a PWM signal. The property is that the signal repeatedly transits between a low and high level at a certain frequency. A low voltage PWM signal is boosted to a high voltage PWM signal through a coupling capacitor using the property of the PWM signal, and the boosted high voltage PWM signal drives a p-channel metal oxide semiconductor (PMOS) transistor on the high side Buck converter. Experimental results show that the proposed level shifter boosts a low voltage (0 to 20 V) PWM signal at 125 kHz to a high voltage (370 to 380 V) PWM signal with a duty ratio of up to 0.9941.

Measurement of Ratio Error/Phase Angle Error of Potential Transformer using High Voltage Capacitance Bridge and Uncertainty Analysis (고전압 전기용량 브리지를 이용한 전압변성기의 비오차와 위상각 오차의 측정과 불확도 분석)

  • Kwon, Sung-Won;Lee, Sang-Hwa;Kim, Myung-Soo;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.134-141
    • /
    • 2006
  • A potential transformer(PT) has ratio error and phase angle error. Precise measurement of the errors of PT can be achieved using high voltage capacitance bridge, high voltage capacitor and low voltage capacitor. The uncertainty for this method is evaluated and found to be $20{\times}10^{-6}$ in both ratio error and phase angle error. The values measured for PT using the method are well consistent with the those measured for same PT in NMIA(National Measurement Institute of Australia) within the corresponding uncertainty.

Low-cost crowbar system and protection scheme in capacitor bank module (커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로)

  • Rim, Geun-Hie;Cho, Chu-Hyun;Lee, Hong-Sik;Pavlov, E.P.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

Design of 9 kJ/s High Voltage LiPo Battery based 2-stage Capacitor Charger (배터리 기반 2단 충전 9 kJ/s 고전압 충전기 설계)

  • Cho, Chan-Gi;Jia, Ziyi;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.268-272
    • /
    • 2019
  • A lithium polymer battery-based 9 kJ/s high-voltage capacitor charger, which comprises two stages, is proposed. A modified LCC resonant converter and resonant circuit are introduced at the first and second stages, respectively. In the first stage, the methods for handling low-voltage and high-current batteries are considered. Delta-wye three-phase transformers are used to generate a high output voltage through the difference between the phase and line-to-line voltages. Another method is placing the series resonant capacitor of the LCC resonant components on the transformer secondary side, which conducts considerably low current compared with the transformer primary side. On the basis of the stable operation of the first charging stage, the secondary charging stage generates final output voltage by using the resonance. This additional stage protects the rectifying diodes from the negative voltage when the output capacitor is discharged for a short time. The inductance and capacitance of the resonance components are selected by considering the resonance charging time. The design procedure for each stage with the aforementioned features is suggested, and its performance is verified by not only simulation but also experimental results.

Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC

  • Nam, Taesik;Kim, Heejin;Kim, Sangmin;Son, Gum Tae;Chung, Yong-Ho;Park, Jung-Wook;Kim, Chan-Ki;Hur, Kyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.829-838
    • /
    • 2016
  • This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.