• Title/Summary/Keyword: High-Turning Turbine Rotor

Search Result 23, Processing Time 0.021 seconds

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Measurement of Thermal Load in the Tip-Clearance Region of a Rotor Surface (팁간극 영역에서의 동익 표면 열부하 측정)

  • Lee, Sang-Woo;Kwon, Hyun-Goo;Park, Jin-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.187-192
    • /
    • 2003
  • The heat (mass) transfer characteristics in the tip-leakage flow region of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat transfer data in the tip-leakage flow area for the tip clearance-to-span ratio, h/s, of 2.0% are compared with those in endwall three-dimensional flow region without tip clearance (h/s = 0.0 %). The result shows that the thermal load in the tip-leakage flow region for h/s = 2.0% is more severe than that in the endwall flow region for h/s = 0.0%. The thermal loads even at the leading and trailing edges for h/s = 2.0% are found larger than those for h/s = 0.0%. The tip-leakage flow results in heat transfer augmentations near the tip on both pressure and suction sides in comparison with the mid-span results.

  • PDF

Multiblock Grid Generation for Turbomachinery Cascade-Flow Analysis (터보기계 익렬유동해석을 위한 다중블록 격자형성법)

  • Chung H. T.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1996
  • A multiblock grid generation has been developed to be reliably used for a Navier-Stokes simulation of the turbomachinery flow-fields A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid in the tip flow region. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The grid refinement process is enhanced by developing strategies to utilized Bezier curves and splines along with weighted transfinite interpolation technique and by formulating the grid-imbedding method for the viscous boundary-layer meshes. For purposes of illustration, the grid generator is applied to the high turning turbine rotor blades. Two different types of computational grids are provided to be compared with respect to the grid adaptation to the flow simulations. Extension to three-dimensions was done to show the possibility of its application to the tip-flow simulations. The grid quality of the multiblock structure is good in the passages, with gloval orthogonality and adequate smoothness.

  • PDF