• Title/Summary/Keyword: High-Speed Processing

Search Result 2,189, Processing Time 0.031 seconds

A Development of LDA Topic Association Systems Based on Spark-Hadoop Framework

  • Park, Kiejin;Peng, Limei
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.140-149
    • /
    • 2018
  • Social data such as users' comments are unstructured in nature and up-to-date technologies for analyzing such data are constrained by the available storage space and processing time when fast storing and processing is required. On the other hand, it is even difficult in using a huge amount of dynamically generated social data to analyze the user features in a high speed. To solve this problem, we design and implement a topic association analysis system based on the latent Dirichlet allocation (LDA) model. The LDA does not require the training process and thus can analyze the social users' hourly interests on different topics in an easy way. The proposed system is constructed based on the Spark framework that is located on top of Hadoop cluster. It is advantageous of high-speed processing owing to that minimized access to hard disk is required and all the intermediately generated data are processed in the main memory. In the performance evaluation, it requires about 5 hours to analyze the topics for about 1 TB test social data (SNS comments). Moreover, through analyzing the association among topics, we can track the hourly change of social users' interests on different topics.

Development of High-Speed Real-Time Image Signal Processing Unit for Small Infrared Image Tracking Radar (소형 적외선영상 호밍시스템용 고속 실시간 영상신호처리기 개발)

  • Kim, Hong-Rak;Park, Jin-Ho;Kim, Kyoung-Il;Jeon, Hyo-won;Shin, Jung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2021
  • A small infrared image homing system is a tracking system that has an infrared image sensor that identifies a target through the day and night infrared image processing of the target on the ground and searches for and detects the target with respect to the main target. This paper describes the development of a board equipped with a high-speed CPU and FPGA (Field Programmable Gate Array) to identify target through real-time image processing by acquiring target information through infrared image. We propose a CPU-FPGA combining architecture for CPU and FPGA selection and video signal processing, and also describe a controller design using FPGA to control infrared sensor.

A Study on the Optimization of Servo System Originating to High-Speed Fixed Duty Processing (고속 고정도가공에 기인하는 Servo System의 최적화와 기능특성에 관한 연구)

  • Lee, Hong-Gil;Kim, Won-il;Choi, Myung-Hwan;Baek, Sang-Yeob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2009
  • The most dominate aspect in machine works using CNC devices in industrial production processes is the precision of the product and the Cycle Time. To this day, many studies on the external factors of the technology to reduce the Cycle Time have advanced amid to the advancements in cam soft development for manual programs and the numerous studies on high speed and precision machining. This study experimented various functions of the sequence pattern flow and arranged system development technologies of past few years to develop and applicate various usage of adjustment factors within the CNC, so it would be more understandable to the user and would enable them to make high speed and precision products more faster develop and. In order to reduce the Cycle Time, the mechanism of machine tools has to be analysed and applied, in addition to program reduction and improvement of the manufacture process.

  • PDF

MICROPROCESSOR BASED SENSORLESS SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR (마이크로 프로세서를 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • Choi, J.Y.;Kim, S.H.;Shin, J.K.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.33-35
    • /
    • 1995
  • Permanent magnet brushless motor is widely used in industrial drive applications due to high efficiency, high power ratio, and easy maintenance. Position and speed sensors required in this dolor increase the drive cost, and reduce the application range. Some papers present the sensorless speed control using DSP with a high processing performance. However, DSP increases the cost, and makes the implementation difficult. This study has performed the sensorless speed control with a microprocessor system which can be easily accessed.

  • PDF

A Study on the Digital Image Editing Systems using the High Speed Data Link Technique (초고속 데이터 링크 기술에 기반을 둔 디지털 영상 편집 시스템에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.558-560
    • /
    • 2019
  • Recently, there are steadily required more highly broadcasting service based on the broadcasting extension and improved quality. This paper proposed the method of the implemented above mentioned. The proposed high speed data link techniques method is more improved processing speed and more efficiently editing advantage compare with earlier methods.

  • PDF

Design of A High-Speed Data Transmission System for Satellite Ground Inspection Trial

  • Hao Sun;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.26-34
    • /
    • 2023
  • A high-speed data transmission system is designed for the ground inspection equipment of satellite measurement and control. Based on USB2.0, the system consists of interface chip CY7C68013A, programmable logic processing unit EP4CE30F23C8, analog/digital and digital/analog conversion units. The working principle of data transmission is analyzed, and the system software logic and hardware composition scheme are detailed. The system was utilized to output/capture and store specific data packets. The results show that the high-speed data transmission speed can reach 38MB/s, and the system is effective for satellite test requirements.

The Study on the Composition of the Encoder for Driving the High Speed Spindle Motor (고속 스핀들 전동기 구동을 위한 자기식 엔코더 구성에 관한 연구)

  • Choi Cheol;Kim Cheol-U;Lee Sang-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.253-259
    • /
    • 2005
  • Magnetic encoder with relatively low pulse per rotation is generally used for detecting speed of the high-speed rotating machine. It is due to the fact of the mechanical problems of vibration and bearing stiffness and also the limit of maximum output pulse of the mounted encoder. The magnetic encoder is divided into two types, that is, toothed gear-wheel method and magnetic wheel method according to the shape of the rotation disk. In case of detecting speed by the tooth gear-wheel, the encoder itself can be acted as the additional inertia where the number of tooth determining the output pulse and the width of the wheel detecting the change of the magnetic flux density are relatively enough large considering the volume of the rotating machine. While the magnetic wheel method has the limit of the magnetizing number of the ring magnet, there is relatively few, if nv, the influence of inertia on the machine. In this paper, it is proposed a simple magnetic wheel encoder suited for the high speed rotating machine and the method of signal processing and the output characteristics are examined through the V/F operation of max 48,000(rpm) and 2.4(KW) spindle motor.

Dynamic Bechavior of the keyhole in Laser Processing (레이저 가공에 있어서 키홀의 동적거동)

  • 김종도
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.23-31
    • /
    • 1997
  • The results of high speed photography, acoustic emission detection and plasma UV radiation intensity measurement during CO2 laser welding of stainless steel 304 are presented. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of a high speed melt flow which originated from the part of weld pool and flowed along the sides wall of keyhole was confirmed by the slag motion on the weld pool. the characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal acoustic emission (AE) and light emission (LE) spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. (The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation.) The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

  • PDF

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF