• Title/Summary/Keyword: High-Speed Boat

Search Result 75, Processing Time 0.024 seconds

A Study on the Resistance Characteristics of Leisure Boat According to Chine Shape (차인 형상에 따른 레저선박의 저항특성에 관한 연구)

  • Kim, Juyeol;Choi, Junho;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.566-573
    • /
    • 2017
  • The chine of high speed vessels does not only play a role in changing position when planing but also helps balancing the hull. It also has a great influence on resistance performance. However, designing a chine requires a lot of experience because it is influenced by various factors such as displacement, transom shape, draft and width. Such a design is not based on an empirical formula, but the purpose of this study is to provide basic guidelines regarding the shape of chine through calculation. This design was developed using Yacht-one, a commercial design program, and analysis was performed using Star-CCM+, also a commercial analysis program. Analysis of the hull selected in this study was carried out by Dynamic Fluid Body Interaction (DFBI) method. Analysis of the chine was carried out at chine angles of 15, 16, 17, and 19degrees, at a speed of 30knots. The result indicated that the highest trim occurred at 16 degrees among the four chine angles considered, and the highest heave occurred at 15degree. In terms of resistance performance, minimum resistance was observed at 16 degrees. Consequently, for minimum ship resistance, it is necessary to complete calculations in accordance with the chine angles, ${\pm}2$ degrees from the initial chine angle, which should be carried out a the design stage.

Comparative Study of Design Loads for the Structural Design of Titanium Leisure Boat (티타늄합금 레저보트의 구조설계를 위한 설계하중 비교연구)

  • Yum, Jae-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.733-738
    • /
    • 2021
  • Recently, people's interest in marine leisure has been increasing, and research and development on leisure boats are actively being carried out to pioneer overseas markets. These days, the materials used for leisure boats are fiber-reinforced plastic (FRP) and aluminum alloy. However, FRP is hygroscopic and causes environmental problems, and aluminum alloy has high thermal conductivity and fire susceptibility. Therefore, titanium alloy is being adopted as a material for leisure boats instead. In this study, hull thicknesses and design pressures were calculated while considering dynamic effects for titanium boats. Four sets of rules and regulations were used: ISO 12215-5, RINA Pleasure Yacht, LR Special Service Craft, and KR High-speed Light Craft. The maximum bottom slamming loads were in the order of ISO, KR, LR, and RINA, and the required hull thicknesses were in the same order. This research might be helpful for understanding the rules, regulations, and overseas export of leisure boats.

Improvement of resistance performance of the 4.99 ton class fishing boat (4.99톤 어선의 저항성능 개선)

  • JEONG, Seong-Jae;AN, Heui-Chun;KIM, In-Ok;PARK, Chang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • The improvement of resistance performance for the 4.99 ton class fishing boats was shown. The 4.99 ton fishing boats are the most commonly used one in the Korean coastal region. The evaluation of resistance performance was estimated by the Computational Fluid Dynamics (CFD) analysis. The CFD simulation was performed by the validation for various types of bow shapes on the hull. The optimized hull form from the simulation was selected and showed the best resistance performance. This hull type was tested on the towing tank in the National Institute of Fisheries Science (NIFS). The effective horsepower (EHP) was estimated by the resistance test on the towing tank with the bare hull condition. The drag force on the three service speed conditions was obtained for the resistance analysis to power prediction. The measured drag forces are compared with the results from the CFD simulation with one another. As results of the model tests, it was confirmed that the shape of the bow is an important factor in the resistance performance. The effective horsepower decreased about 30% in comparison with the conventional hull form. Also, the resistance performance improved the reduction of required horsepower, which especially contributed to the energy-saving for the fisheries industry. In the CFD analysis, the resistance performance improved slightly. In this case, the ratio of the residual resistance ($C_R$) in the total resistance ($C_T$) was high. Therefore, the CFD analysis was not enough to satisfy with reflection for the free surface and wave form in the CFD procedure. Both model test and CFD calculation in this study can be applied to the initial design process for the coastal fishing vessel.

Response of Anchovy to Artificial Sounds (소리자극에 대한 멸치의 반응)

  • 김상한
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 1978
  • When fisherman use the boat seine net to catch anchovy, a large noise (drum can, small drum and small gong) is used to scare the anchovy school along the wing nets, and into the bag net were they are caught. We want to know how much of an effect these s:mnds have on forceing the anchovy school towards the bag net. The underwater sounds of ancho\'y, drum can, small drum and small gong were analyzed in the labroatory. The behavioral responeses to the playback sounds of anchovy feeding and sounds of artificial instruments were also investigated. The feeding and artificial sounds of the samples were recorded by a tape recorder through a hydrophone in an anechoic aquarium. The sound intensity level was measured by means of a sound level meter in an anechoic chamber. The frequency and intensity of various sounds were analyzed with an analyzing system consisting of a ~-octave filter set, a high speed level recorder, an amplifier and an oscilloscope. The most successful recording was edited into a 9 to 10 second sound track and was repeated in a sequence of 9 to 10 second intervals. The sequence was then reproduced into an anechoic aquarium through the underwater speaker. The results of investigation are as follows; 1. The frequency of the feeding sound was 63~80Hz, and the pressure level produced was less than 32db. 2. The frequencies of the artificial sounds were 315~ 1,OOOHz, and the pressure levels were 88~95 db in the air. 3. When a hydrophone was placed 70cm below the surface with artificial sounds (drum can, small drum and small gong) produced 1 meter above the surface, the pressure level decreased about 30db. 4. The feeding sound was ineffective in attracting the anchovy, because of interference from ambient noise. 5. The artificial sounds had such a small effect on the anchovy's that they could not be used in ocean fisheries.

  • PDF

The Simulation for the Organization of Fishing Vessel Control System in Fishing Ground (어장에 있어서의 어선관제시스템 구축을 위한 모의실험)

  • 배문기;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.175-185
    • /
    • 2000
  • This paper described on a basic study to organize fishing vessel control system in order to control efficiently fishing vessel in Korean offshore. It was digitalized ARPA image on the fishing processing of a fleet of purse seiner in conducting fishing operation at Cheju offshore in Korea as a digital camera and then simulated by used VTMS. Futhermore, it was investigated on the application of FVTMS which can control efficiently fishing vessels in fishing ground. The results obtained were as follows ; (1) It was taken 16 minutes and 35 minutes to casting and hauling net in fishing processing respectively. The length of rope pulled by scout boat was 200m, tactical diameter in casting net was 340.8m, turning speed was 6kts as well. (2) The processing of casting and hauling net was moved to SW, NE as results of simulation when the current direction and speed set into NE, 2kts and SW, 2kts respectively. Such as these results suggest that can predict to control the fishing vessel previously with information of fishing ground, fishery and ship's maneuvering, etc. (3) The control range of VTMS radar used in simulation was about 16 miles. Although converting from a radar of the control vessel to another one, it was continuously acquired for the vector and the target data. The optimum control position could be determined by measuring and analyzing to distance and direction between the control vessel and the fleet of fishing vessel. (4) The FVTMS(fishing vessel traffic management services) model was suggested that fishing vessels received fishing conditions and safety navigation information can operate safely and efficiently.

  • PDF