• Title/Summary/Keyword: High-Resolution Radar

Search Result 327, Processing Time 0.027 seconds

Millimeter-wave Fast-sweep FM Reflectometry Applied to Plasma Density Profile Measurements

  • Kang, Wook-Kim
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2001
  • A fast-sweep broadband FM reflectometer system has been successfully developed and operacted at the DIII-D tokamak, producing reliable density Profiles with excellent spatial (1 $\leq$ cm) and temporal resolution (~100 $\mu$ s). The system uses a solid-state microwave oscillator and an active quadrupler, covering full Q-band frequencies (33~50 GHz) and providing relatively high output power (20~60 mW). The system hardware allows fu11band frequency sweep in 10 $\mu$ s, but due to digitization rate limit on DIII-D, sweep time was limited to 75~100 $\mu$ s. Fast frequency sweep has helped to reduce density fluctuation effects on the reflectometer phase measurements, thus improving reliability for individual sweeps. The fast-sweep system with high spatial and temporal resolution has allowed to measure fast-changing edge density profiles during plasma ELMS and L-H transitions, thus enabling fast-time sca1e physics studies.

  • PDF

Application of the 3D Discrete Wavelet Transformation Scheme to Remotely Sensed Image Classification

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition (Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.81-91
    • /
    • 2021
  • Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.

Evaluation of Wind Speed Depending on Pulse Resolution of UHF Wind Profiler Radar (UHF 윈드프로파일러 레이더의 펄스 해상도에 따른 풍속의 정확성 평가)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.429-436
    • /
    • 2021
  • The wind profilers operated by the Korea Meteorological Administration observe in a low mode for intensive observation of the low levels and a high mode for intensive observation of the high levels. The LAP-3000 wind profiler installed in Bukgangneung and Changwon is characterized by the same sampling frequency of the low mode and the high mode, allowing to compare winds observed in both modes at the same altitude. As a result of analyzing the wind speed of the two points for one year in 2020, the correlation between the two modes was up to 0.2 lower than the correlation with radiosonde. The T-test for the wind speed of the two modes showed a particularly significant difference in October, where the temperature and specific humidity fluctuate frequently. The difference in the development of the atmospheric boundary layer affects the accuracy of the wind speed depending on the observation mode.

A Study on Signal Processing of Rear Radars for Intelligent Automobile (지능형 차량을 위한 후방 감시용 레이더 신호 처리 기법에 관한 연구)

  • Choi, Gak-Gyu;Han, Seung-Ku;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper introduces a radar signal processing technique for intelligent rear view monitoring of an automobile. The linear frequency modulation-frequency shift keying(LFM-FSK) waveform, which is the combination of frequency modulation continuous wave(FMCW) and frequency shift keying(FSK) waveform, is employed to simultaneously estimate the range, relative aspect angle, and velocity of an automobile. Hence, it can be applied to monitor the rear view of an automobile. FMCW waveform has high range resolution capability, but it produces ghost targets under a multiple target environment. In contrast, FSK waveform can provide high velocity resolution and avoids the problem of ghost targets. However, it fails to identify multiple targets along the radar's line of sight. With LFM-FSK waveform, we can estimate the ranges and velocities of multiple targets with very high resolution, which avoids the ghost target problem of an FMCW waveform. Simulation result shows that LFM-FSK wavefrom is suitable for use in the lane change assistance system for an automobile.

Generation of radar rainfall data for hydrological and meteorological application (I) : bias correction and estimation of error distribution (수문기상학적 활용을 위한 레이더 강우자료 생산(I) : 편의보정 및 오차분포 산정)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Information on radar rainfall with high spatio-temporal resolution over large areas has been used to mitigate climate-related disasters such as flash floods. On the other hand, a well-known problem associated with the radar rainfall using the Marshall-Palmer relationship is the underestimation. In this study, we develop a new bias correction scheme based on the quantile regression method. This study employed a bivariate copula function method for the joint simulation between radar and ground gauge rainfall data to better characterize the error distribution. The proposed quantile regression based bias corrected rainfall showed a good agreement with that of observed. Moreover, the results of our case studies suggest that the copula function approach was useful to functionalize the error distribution of radar rainfall in an effective way.

An Implement of Fixed Obstacle Detecting RADAR Algorithm for Smart Highway (스마트하이웨이에 적합한 장애물 탐지용 레이더 알고리즘 구현)

  • Lee, Jae-Kyun;Park, Jae-Hyoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Smart Highway is the intelligent highway that improves a traffic safety, reduces incidence of traffic accidents, and supports intelligent and convenient driving environment so that drivers can drive at high speeds in safety[1]. In order to implement the highway, it is required to gather a dangerous data such as obstacle, wild animal, disabled car, etc. To provide the situation information of the highway, it has been gathered traffic information using various sensors. However, this technique has problems such as the problems of various information gathering, lack of accuracy depending on weather conditions and limitation of maintenance. Therefore, in order to provide safe driving information to driver by gathering dangerous condition, radar system is needed. In this paper, we used a developing 34.5GHz RWR(Road Watch Radar) radar for gathering dangerous information and we verified performance of obstacle detecting and resolution through field test.

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Target Recognition Method of DTV-Based Passive Radar Using Multi-Channel Combining Method (다중 채널 융합 기법을 이용한 DTV 기반 수동형 레이다의 표적 인식 방법)

  • Seol, Seung-Hwan;Choi, Young-Jae;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.794-801
    • /
    • 2017
  • In this paper, we proposed airborne target recognition using multi-channel combining method in DTV-based passive radar. By combining multi-channel signals, we obtained the HRRP with sufficient range resolution. HRRP was obtained by AR method or zero-padding. From the obtained HRRP, we extracted scattering centers by CLEAN algorithm using the gradient descent. We extracted feature vectors and performed target recognition after training neural network using the extracted feature vectors. To verify performance of proposed methods, we assumed frequency bands of three broadcasting transmitters operated in Korea(Mt. Gwan-ak, Mt. Yong-moon, Kyeon-wol-ak) and used full scale 3D CAD model of four targets. Also we compared the target recognition performance of the proposed method with that of using only single-channel of three broadcasting transmitters. As a result, proposed methods showed better performance than using only single-channel at three broadcasting transmitters.

Quality Analysis of SAR Image

  • Lee, Young-Ran;Kwak, Sung-Hee;Shin, Dong-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.628-630
    • /
    • 2003
  • Synthetic Aperture Radar(SAR) is an active microwave instrument that performs high-resolution observation under almost all weather condition. Research and algorithms have been proposed to process radar signal and to increase the quality of SAR products. In fact, many complicated steps are involved in order to generate a SAR image product. The purpose of this paper is to derive quality assessment procedures and define important test parameters in each procedure inside a SAR processor. Thus those test parameter values indicate the quality of SAR image products and verify the processor's performance. Moreover, required procedures to correct and handle errors which are indicated during the assessment are also presented.

  • PDF