• Title/Summary/Keyword: High-Power Induction Motor

Search Result 337, Processing Time 0.029 seconds

A Study on the DC Link Inductor and Clamping Capacitor in GTO Inverter (GTO 인버터에서의 직류 링크 인덕터 및 클램핑 커패시터의 특성 고찰)

  • Jeon, Young-Keon;Yoon, Yong-Ki;Lee, Gie-Tae;Kim, Jin-Pyo;Choi, Sang-Won;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2628-2631
    • /
    • 1999
  • One of the limitations of conventional ASCI for high-power induction motor drives is the high voltage that is produced in the commutation capacitors during the current commutation from one phase to another. Since the capacitor voltage appears directly on the semiconductor components, it increases their required voltage ratings. Also, the high-voltage spikes generated at the motor terminals may cause damage to the motor insulation. And we investigated how de input power is increased or decreased according to size of de link inductor. In this paper, de link inductor and clamping capacitor in GTO inverter suitable for induction motor drives are propose through experiment.

  • PDF

Design of Speed Controller for an Induction Motor with Inertia Variation

  • Sin E. C.;Kong B. G.;Kim J. S.;Yoo J. Y.;Park T. S.;Lee J. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.374-379
    • /
    • 2001
  • In this paper, a novel design algorithm of speed controller for an Induction motor with the inertia variation is proposed. The main contribution of our work is a very robust, reliable and stable procedure for setting of the PI gains against the specified range of the inertia variation of an induction motor using Kharitonovs robust control theory. Therefore, the basic segment of controller design, the variation of induction motor inertia is estimated by the RLS (Recursive least square) method. PI based speed controller is widely used in industrial application for its simple structure and reliable performance. In addition the Kharitonov robust control theory is used for verification stability of closed-loop transfer function. The performance of this proposed design method is proved by digital simulation and experimentation with high performance DSP based induction motor driving system.

  • PDF

The Efficiency Optimization Control of an Indirect Vector-Controlled Induction Motor Drive (간접벡터제어 유도전동기의 효율 최적화 운전)

  • Choi, Jin-Ho;Shin, Jae-Hae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.352-354
    • /
    • 2000
  • The induction motor is a high-efficiency machine when working close to its rated operation point. This paper uses a simple induction motor model that includes iron losses. The model, which only requires the knowledge of conventional induction motor parameters, is referred to a field-oriented frame. At steady-state light-load condition the minimum point of the input power can be found with the condition that it is possible to obtain the same torque with different combinations of flux and current values. Using the minimum point. the drive system with the proposed efficiency optimization controller can be controlled easily. Simulation and experimental results show the effectiveness of the control strategy proposed for an induction motor drive.

  • PDF

A Speed Control Characteristics for Five-Phase Squirrel-Cage Induction Motor Injecting 3rd Current Harmonics Component (제3 고조파 전류성분 주입에 의한 5상 농형 유도전동기의 속도제어 특성)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • This paper proposes a improved speed control system for five-phase squirrel-cage induction motor(IM) injecting 3rd. current harmonic components with field oriented control (FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current in order to high response characteristics. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[kW] induction motor.

Rotor Fault Detection System for the Inverter Driven Induction Motor using Current Signals

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Choi, Chang-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.224-231
    • /
    • 2009
  • The induction motor rotor fault diagnosis system using current signals, which are measured using an axis-transformation method, is presented in this paper. In inverter-fed motor drives, unlike line-driven motor drives, the stator currents are rich in harmonics; therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, and encoder, etc. The proposed axis-transformation method with encoder and without encoder is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation is compared with the results obtained from fast Fourier transforms.

Sensorless Vector Control of a Wound Induction Motor Using MRAS with On-Line Stator Resistance Tuning

  • Lee Jae-Hak;Kim Yoon-Ho;Lee Houng-Gyun;Woo Hyuk-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.462-465
    • /
    • 2001
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large scale resistor. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as Crain and Cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and in general, PI controller is used for control of current, torque, position, and speed for the wound induction motor drive system. However, the system may result in poor performance since sensors have to be used, which in turn is limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor drive. In conventional MRAS method, in low frequency, stator resistance variation can result in poor performance. Therefore, to overcome several shortages of the conventional MRAS caused by parameter variation and enhance robustness of the sensor less vector control, this paper investigates a MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor. The validity and effectiveness of the proposed method is verified through digital simulation.

  • PDF

Parameter Measurement and Identification for Induction Motors (유도 전동기의 매개변수 측정 및 동정)

  • 김규식;김춘환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 2001
  • The accurate identification of the motor parameters is crucially important to achieve high dynamic performance of induction motors. In this paper, th motor parameters such as stator(rotor) resistance, stator(rotor) leakage inductance, mutual inductance, and rotor inertia are measured in off-line. Stator(rotor) resistance and stator(rotor) leakage inductance are measured based on the stationary coordinate equations of induction motors. On the other hand, mutual inductance are measured under the scalar control. Finally, the inverse rotor time constant is identified in on-line using an extended kalman filter algorithm. To demonstrate the practical significance of the results, Some experimental results are presented.

  • PDF

Dynamic Performance Analysis for Different Vector-Controlled CSI- Fed Induction Motor Drives

  • Mark, Arul Prasanna;Irudayaraj, Gerald Christopher Raj;Vairamani, Rajasekaran;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.989-999
    • /
    • 2014
  • High-performance Current Source Inverter (CSI)-fed, variable speed alternating current drives are prepared for various industrial applications. CSI-fed Induction Motor (IM) drives are managed by using different control methods. Noteworthy methods include scalar Control (V/f), Input-Output Linearization (IOL) control, Field-Oriented Control (FOC), and Direct Torque Control (DTC). The objective of this work is to compare the dynamic performance of the aforementioned drive control methods for CSI-fed IM drives. The dynamic performance results of the proposed drives are individually analyzed through sensitivity tests. The tests selected for the comparison are step changes in the reference speed and torque of the motor drive. The operation and performance of different vector control methods are verified through simulations with MATLAB/Simulink and experimental results.

Suppression method for current oscillation of V/F controlled high speed induction motor (V/F 제어 고속 유도전동기의 전류 진동 억제 방법)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.150-151
    • /
    • 2017
  • This paper deals with the suppression of subharmonic current oscillation of V/F controlled high speed induction motor drive in turbo blower applications. High speed induction motor has a relatively low stator impedance for high speed operation and therefore the dc link voltage ripple may result in subharmonic current oscillation at the steady state in high speed operation. This paper shows that the subharmonic oscillation is caused by the dc link voltage ripple and also proposes the suppression method, which generates the compensation voltage through the proportional current controller to reduce the subharmonic current oscillation. The simulation and experimental results show that the proposed suppression method reduces the subharmonic current oscillation to the acceptable low level in turbo blower applications.

  • PDF

The Influence of Inductive Loads on the Power System Voltage (유도부하가 전력계통 부하모선의 전압에 미치는 영향)

  • 조양행;정재길
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 1995
  • Along with the recent trend of complexity and long distance transmission in power system, dynamic analysis of stability considering the load characteristics is an important subject. In this paper, the influence of the induction motor loads on the power system voltage is investigated. The influence of the inductive load ratio and the inertia of induction motor on the voltage response of the power system are examined, and in the case of the high percentage of the induction motor load, induction motors in the power system can lead to transient voltage instability even under the system condition such as switching operation. The application of static condenser(SC) to prevent the transient voltage instability is introduced.

  • PDF