• Title/Summary/Keyword: High-Performance mortar

Search Result 189, Processing Time 0.028 seconds

Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Lee, Dong-Ryul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.142-152
    • /
    • 2010
  • In this study, eleven reinforced concrete beams, without stirrup, using high ductile fiber-reinforced mortar with ground granulated blast furnace slag(SHF Series, SHFSC Series) and standard specimens without or with stirrup(SSS, BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode, the maximum strength, and shear strength. All the specimens were modeled in scale-down size. Test results showed that test specimens(SHF Series, SHFSC Series) was increased respectively the shear strength carrying capacity by 26%, 20% and the ductility capacity by 5.27, 5.75 times in comparison with the standard specimen without stirrup(SSS). And the specimens(SHF Series, SHFSC Series) showed enough ductile behavior and stable flexural failure.

Mechanic Properties of HES-LMS Mortar (조강형 라텍스개질 스프레이 몰탈의 역학적 특성)

  • Lee, Jin-Beom;Choi, Sung-Yong;Kim, Ki-Heun;Kim, Yong-Kon;Yun, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.841-844
    • /
    • 2006
  • Recently, tunnels being constructed in korea with the increased construction of highways, high-speed railways and hydro structure. shotcrete and spray is one of the major processes in that construction. So general Shotcrete and spray has many problems on strength property, environmental pollution and human body noxiousness as the use of accelerater. However, In this paper using HES-LMS(High Early Strength Latex Modified Spray) without accelerater can solve problems which are mentioned above. problems that the hish early cement has can be solved by modifying material with latex. Therefore HES-LMS mortar is Classify by High performance and High ability. Analysis according to the variables such as W/C, Latex content and sand content is conducted. Studied about mechanical characteristic of material such as each parameter characteristic, and rebound characteristic is completed.

  • PDF

A basic study of Properties of Cement Mortar for 3D Printing Concrete Using Methyl Cellulose Thickener (메틸셀룰로오스(MC)계 증점제 혼입에 따른 3D 프린팅 콘크리트용 시멘트계 모르타르의 특성 변화에 대한 기초적 연구)

  • Kim, Han-Sol;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.68-69
    • /
    • 2019
  • Integrating 3D printing into architecture is gaining attention because it allows construction of construction structures without formwork. Among them, 3D printing construction materials must have high flow performance and at the same time ensure the performance that does not collapse during lamination. Therefore, in this study, we tried to determine the fluidity and lamination properties of mortar formulations, and set the thickener incorporation ratio as the formulation parameters. As a result of this experiment, it was confirmed that the lamination performance was secured from the thickening agent mixing rate of 1.5%.

  • PDF

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Neutron Shielding Performance of Mortar Containing Synthetic High Polymers and Boron Carbide (합성 고분자 화합물 및 탄화붕소 혼입에 따른 모르타르의 중성자 차폐성능 분석)

  • Min, Ji-Young;Lee, Bin-Na;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Concrete walls of neutron generating facilities such as fusion reactors and fission reactors become radioactive by neutron irradiation. Both low-activation and neutron shielding are a critical concern at the dismantling stage after the shutdown of facilities with a requirement of radioactive waste management. To tackle this, two types of additives were investigated in fabricating mortar specimens: synthetic high polymers and boron carbide. It is well known that a hydrogen atom is effective in neutron shielding by an elastic scattering because its mass is almost the same as that of the neutron. And boron is an effective neutron absorber with a big neutron absorption cross section. In this study, the effect of the type, shape, and size of polymers were investigated as well as that of boron carbide. Total 16 mix designs were prepared to reveal the effect of polymers on mechanical properties and neutron shielding performance. The neutron does equivalent of polymers-based mortar for fast neutrons decreased by 36 %, and the count rate of boron carbide-based mortar with regard to thermal neutrons decreased by 90 % compared to conventional mortar. These results showed that a combination of polymers and boron carbide compounds has potential to reduce the thickness of neutron shields as well as radioactive waste from reactors.

Evaluation of the Basic Properties of Materials for Application of Functional Plaster Mortar (기능성 미장 모르타르의 현장 적용을 위한 재료별 기초 물성에 관한 평가)

  • Cho, Do-Young;Kim, Gyu-Yong;Miyauchi, Hiroyuki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2012
  • The development of building must be accompanied with construction technology and performance of materials. In particular, wet processes have a high level of dependence on manpower and a low level of diversification of materials used. This study aimed to determine the applicability of various materials for wet process, mechanized construction and eco-friendly building materials through a comparison with dry premixed mortar. As a result, it was found that resin plaster and gypsum plaster's strength is lower than that of dry cement mortar, but their mechanization application, construction simplification, smoothness and bond strength are higher than that of dry cement mortar. And estimate that is valid as workability, bonding strength, eco-friendly building material in occasion of gypsum plaster.

Fundamental Study of Polymer-modified Cement Mortar for Maintenance in Concrete Structure According to Ambient Temperature (온도에 따른 콘크리트 구조체 단면 보수용 폴리머 모르타르의 기초적 연구)

  • Seo, Jung-Pil;Kim, Jae-Won;Lee, Jung-Koo;Choi, Hun-Gug;Kang, Cheol;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.59-62
    • /
    • 2007
  • Nowadays, polymer-cement mortars are widely used in construction field(floorings and pavements, water-proofings, adhesives, repair materials, deck coverings, anti-corrosive linings) Because of excellent performance such as high tensile and flexural strength, waterproofness, excellent adhesion, good durability, improved wear and chemical resistances. This article presents the results of experimental study that investigates the effect of ambient temperature on the strength properties of polymer-modified cement mortar. Results show that when increasing the polymer proportion in mortar on different ambient temperature, the compressive strength and flexural strength are decreased, and also alkali resistance is decreased.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.