• 제목/요약/키워드: High-Performance Motion Control

검색결과 295건 처리시간 0.027초

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템 (A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권3호
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어 (High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method)

  • 오승현;김정호;조동일
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF

직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템 (A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

직접토크제어에 의한 PMSM의 위치제어 시스템 (A PMSM Motion Control System with Direct Torque Control)

  • 김남훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.615-619
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) vector drives with a direct torque control(DTC) using the 16bit DSP TMS320F240 The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent control for motors which can be yield enhanced operation fewer system components lower system cost increased efficiency and high performance The system presented are stator flux and torque observer of stator flux feedback model that inputs are current and voltage sensing of motor terminal and angle for a low speed operating area two hysteresis band controllers an optimal switching look-up table and IGBT voltage source inverter by using fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템 (A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김동희;김민회;김남훈;배원식
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.427-436
    • /
    • 2002
  • 본 논문은 직접토크제어(Direct torque control, DTC)를 사용한 릴럭턴스 동기전동기(Reluctance synchronous motor, RSM)의 위치센서 없는 모션제어 시스템을 제안한다. 고성능 효율제어를 수행하는데 있어서 DTC를 이용한 릴럭턴스 전동기 드라이브는 고정자 쇄교자속의 포화와 부하전류에 따라 비선형적으로 변하는 인덕턴스로 인해 여러 가지 문제점들이 발생한다. 이러한 이유로 본 논문에서는 정확한 고정자 쇄교자속과 토크를 계산하기 위해서 자속관측기의 $L_d\;와\; L_q$값을 회전자 위치와 고정자 전류에 대해 보상하였으며, 빠른 토크 응답특성과 최적 효율특성을 얻기 위해서 기준자속을 부하에 따라 계산하였다. 제안된 알고리즘의 정당성을 확인하기 위해서 1.0[kW] 릴럭턴스 동기 전동기를 사용하여 $\pm$20[rpm]과 $\pm$1500[rpm]에서 실험을 수행하였고, 실험을 수행한 결과 저속영역과 고속영역 모두 우수한 동특성과 향상된 효율을 얻을 수 있었다.

직접 토크제어에 의한 유도전동기의 위치제어 시스템 (An Induction Motor Motion Control System with Direct Torque Control)

  • 김남훈;김민호;김동희;김민회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1036-1038
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of induction motor vector drives with a direct torque control(DTC) using the 16bit DSP TMS 320F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controllers for induction motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux observer of current model that inputs are current sensing of motor terminal and rotor angle, and optimal switching look-up table by using fully integrated control software. The developed system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

다축 제어용 PC-Based Motion Controller 설계에 관한 연구 (A Study on the PC-Based Motion Controller Design for Multi-Axis Control)

  • 안호균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.641-644
    • /
    • 2000
  • Recently As the performance of the personal computer has been improving rapidly lots of research for the pc-based numerical computer actively progress in an easy repair maintenance and improving the performance with less cost. This paper presents the design using complex programmable logic device(CPLD). The CPU of Motion Controller that function as the real time control of the independent multi-axis motion the error-detect module and external I/O control made use of 80C196KC, In this paper The PC-NC effectively distributed to the load of NCK(numerical computer kernel) and have the advantage of high speed and precision.

  • PDF

네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어 (Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation)

  • 김봉근;최현택;정완균;서일홍;송중호
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템 (A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;김민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

직접 토크제어에 의한 리럭턴스 동기전동기의 위치제어 시스템 (A Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호;김동희;이상호;황돈하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2001
  • This paper presents a digital motion control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consists of stator flux observer, torque estimator: two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter(VSI), and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current, voltage and actual rotor angle for wide speed range. In order to prove the suggested motion control algorithm, There are some simulation and testing at actual experimental system. The developed digitally high-performance motion control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF