• 제목/요약/키워드: High-Frequency Vibration

검색결과 1,356건 처리시간 0.027초

주파수가변 압전 트랜스듀서를 이용한 능동제진법 (Active Vibration Control Method Using Frequency Controllable Piezoelectric Transducer)

  • 김정순;김무준;하강렬;강성학
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권1E호
    • /
    • pp.27-32
    • /
    • 2007
  • Hydraulic actuator and electro-magnetic liner actuator have been used as typical active vibration control methods. However these methods have many kinds of disadvantages such as causing space limit, difficult maintenance, complicate structures, etc. The purpose of this paper was to study on the possibility of active vibration control using piezoelectric transducer. Piezoelectric transducer generated a vibration and GIC (General Impedance Converter) amplifier was adopted to give adjustable vibration signal to transducer and high amplitude of vibration. Resonance frequency of piezoelectric transducer was controlled by GIC amplifier and higher amplitude of vibration was achieved. Finally active vibration control using piezoelectric transducer was performed.

스마트 기기용 강화유리&사파이어 유리 전용 가공기의 진동해석을 통한 설계 개선에 관한 연구 (A Study on Design Improvement by Vibration Analysis of Hardened Glass & Sapphire Machining Equipment for Smart IT Parts Industry)

  • 조준현;박상현;안범상;이종찬
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.51-56
    • /
    • 2016
  • High brittleness is a characteristic of glass, and in many cases it is broken during the process of machining due to processing problems, such as scratches, chipping, and notches. Machining defects occur due to the vibration of the equipment. Therefore, design techniques are needed that can control the vibration generated in the equipment to increase the strength of tempered glass. The natural frequency of the machine tool via vibration analysis (computer simulation) must be accurately understood to improve the design to ensure the stability of the machine. To accurately understand the natural frequency, 3D modeling, which is the same as actual apparatus, was used and a constraint condition was also applied that was the same as that of the actual apparatus. The maximum speeds of ultrasonic and high frequency, which are 15,000 rpm and 60,000 rpm, respectively, are considerably faster than those of typical machine tools. Therefore, an improved design is needed so that the natural frequency is formed at a lower region and the natural frequency does not increase through general design reinforcement. By restructuring the top frame of the glass processing, the natural frequency was not formed in the operating speed area with the improved design. The lower-order natural frequency is dominant for the effects that the natural frequency has on the vibration. Therefore, the design improvement in which the lower-order natural frequency is not formed in the operating speed area is an optimum design improvement. It is possible to effectively control the vibrations by avoiding resonance with simple design improvements.

하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구 (A study on characteristics according to the parameter variation for hybrid shaft design)

  • 홍동표;김현식;홍용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

모의 수송환경에서의 적재된 골판지 포장화물 내 배의 진동특성 (Vibration Characteristics of the Pears in Corrugated Fiberboard Container for Packaging be stacked at Simulated Transportation Environment)

  • 정현모;박인식;김만수
    • 한국포장학회지
    • /
    • 제11권1호
    • /
    • pp.11-16
    • /
    • 2005
  • Fruits are subjected to complex dynamic stresses in the transportation environment. During a long journey form the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The first frequency of the pear in packaged freight be stacked in resonance frequency band of the pear packaged freight was increased from the bottom to the top of the stack but the second frequency of that in resonance frequency band of the pear was decreased. This indicated that the high damage score of the pear in bottom tier in vibration test was due to higher acceleration level in resonance frequency band of the pear.

  • PDF

연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究) (A Study on the Control of the Floor Vibration in a Research Building)

  • 백인희;강호섭;손영규
    • 한국건축시공학회지
    • /
    • 제7권3호
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어 (Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어 (Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF

Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs

  • Zhong, Tengfei;Feng, Xin;Zhang, Yu;Zhou, Jing
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.457-473
    • /
    • 2022
  • A high-frequency vibration control method is proposed in this paper for Pumped Storage Power Plants (PSPPs) using Eddy Current Tuned Mass Damper (EC-TMD), based on which a new type of EC-TMD device is designed. The eddy current damper parameters are optimized by numerical simulation. On this basis, physical simulation model tests are conducted to compare and study the effect of structural performance with and without damping, different control strategies, and different arrangement positions of TMD. The test results show that EC-TMD can effectively reduce the control effect under high-frequency vibration of the plant structure, and after the additional damping device forms EC-TMD, the energy dissipation is further realized due to the intervention of eddy current damping, and the control effect is subsequently improved. The Multi-Tuned Mass Damper (MTMD) control strategy broadens the tuning band to improve the robustness of the system, and the vibration advantage is more obvious. Also, some suggestions are made for the placement of the dampers to promote their application.

주기 조절을 이용한 고층 건물의 풍응답 조절 설계 (Wind Induced Vibration Design for High-rise buildings through Control of Natural Period)

  • 김지은;차성희;서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.43-51
    • /
    • 2004
  • As the slenderness ratio of a high-rise building increases, the lateral load resisting system for the building is more often determined by serviceability design criteria. In serviceability design, the maximum drift and the level of vibration are controlled not to exceed the design criteria. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. Development of practical design method for wind induced vibration is required. Generally, wind induced acceleration responses are depending on several variables such as the weight density of a building, damping ratio, the natural period, and etc.. All parameters except the natural period or frequency are usually out of reach for structural engineers, then the wind acceleration response may be proportioned to the natural period. Therefore, in this paper, a wind induced vibration design method based on frequency control technique for high-rise is proposed. The method is applied to vibration design of a 25-story office building for performance evaluation.

  • PDF