• Title/Summary/Keyword: High-Efficient Machining

Search Result 95, Processing Time 0.027 seconds

Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm. (FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

Characteristics of Surface Roughness Based on Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (I) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (I))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.59-66
    • /
    • 2015
  • The production of high value-added products requires efficient processing and this constant demand for complex shape processing has led to the need for hybrid processing. In this study, the surface characteristics of hybrid machining, which combines wire-cut E.D.M and vibration, are examined. The selected experimental parameters are verticality, waveform, amplitude, peak current and frequency. The experimental results provide a guideline for selecting reasonable machining parameters. Surface roughness was improved by increasing the amplitude of the vibration.

A Study on Mold Machining for Bearing Rubber Seal by Formed Tool. (총형공구를 이용한 고정밀 베어링 Rubber seal 금형가공에 관한 연구)

  • 김도형;김연술;이희관;노상흡;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1807-1810
    • /
    • 2003
  • The formed tool is used to machine the unique shape of rubber seal for geometrical shaping and reduction of cutting time. The bearing rubber seal produced by hot press forming has complex geometry for the complex geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining mold of the seal. In this paper, It is performed for selection of the formed tool to investigate cutting edge wear, cutting force, and surface quality. Also, an efficient high precision machining is proposed on the experiment data.

  • PDF

Sustainability Analysis in Titanium Alloy Machining (항공용 티타늄 합금 가공 공정의 지속가능성 평가)

  • Lee, Jin-Hyeok;Kim, Ho-Yung;Yoon, Hae-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2019
  • Titanium alloys have been spotlighted in numerous industries owing to their superior mechanical properties, such as high specific strength. However, the high heat and wear resistance of titanium alloys also lower their machinability and limit the wider application of the material. Many researchers have investigated the processing of titanium alloys, and it is required to evaluate the effectiveness and efficiency of developed technologies. From this perspective, this research studied sustainability in titanium alloy machining. The power consumption of the machine was measured during the process and analyzed in terms of process parameters and individual machine components. Here, an end mill specially designed for titanium was also investigated and compared with a general-purpose cutting tool. Based on the experimental results, a model was constructed to predict the power consumption of the overall process. It is expected that this study will contribute to the more effective and efficient processing of titanium alloys.

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

Efficient Arc Detection and Control Method in Electro-discharge Machining (방전가공기의 효율적인 아크 검출과 제어방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.309-315
    • /
    • 2018
  • In this paper, propose an efficient arc detection and control method to achieve fast machining speed, improved precision and surface roughness in discharge machining, especially for carbide and hard material processing and metal processing using discharge phenomenon as energy. A single discharge waveform is divided into three sections of Td (Time-Delay), Ton (Time-on) and Toff (Time-off) and the gate control timing is simulated using the HDL language. In this paper, we analyze the effect of the gap between the electrode and the workpiece on the machining results by determining the operation of the servo mechanism by sampling the Td section through the comparator circuit. As a result of the analysis, the Td section of the formed waveform was more precisely sampled at a high speed and the results were improved when applied to the gap control between the electrode and the workpiece.

Experimental evaluation of machining limit in machining V-shaped microgrooves on electroless nickel plated die materials (무전해 니켈도금 소재의 초정밀 가공에서 V-형상 미세 패턴 가공한계에 대한 실험적 평가)

  • Kim, Hyun Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.263-267
    • /
    • 2013
  • The continuing demand for increasingly slimmer and brighter liquid crystal display (LCD) panels has led to an increased focus on the role of light guide panels (LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit (BLU). The most basic process in the production of such BLU components is the micromachining of V-shaped grooves. Thus, given the current trend, micromachining of V-shaped grooves is expected to play increasingly important roles in today's manufacturing technology. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with V-shaped grooves. High-aspect-ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining limit in microcutting V-shaped grooves on electroless nickel plated die materials when using single-crystal diamond tools with point angles of $20^{\circ}-80^{\circ}$. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools. The experimental results are that V-shaped patterns with angles of $80^{\circ}$ or up can be realized regardless of the machining conditions and equipment. Moreover, the feed rate has little effect on machinability, and it is thought that the fly-cut method is more efficient for shallow patterns.

Efficient MQL-based Drilling of Inconel 601 (인코넬 601의 효율적인 MQL드릴링 가공)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In drilling Inconel 601, which is used for compressor cases in aircraft engines, a lot of cutting oil must be supplied. This prevents tools from wear and fracture due to the heat buildup resulting from the high-temperature resistance and toughness of this alloy. However, the cutting oil supply has compromised the machining environment. This has caused attention to shift to an environmentally friendly cutting fluid supply system called the Minimum Quantity Lubrication(MQL) system. The aim of this study was to find a more efficient drill processing method using MQL and to verify its performance. To that end, the properties of Inconel that make it difficult -to -drill were studied by a comparison with the drilling of SM45C. Specific factors (i.e., cutting force and tool wear) were examined in relation to the conditions in the MQL-based drilling system. Based on these results, a sealed cover and step feed were proposed as measures to increase the effectiveness of the MQL system. The efficiency of the proposed method was established.

Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center (금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Jeong, Won-Young;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.

Study on the Cooling Effect of Motor Integrated Spindle (모터내장형 주축의 냉각특성에 관한 연구)

  • Song, Young-Chan;Lee, Deug-Woo;Choi, Dae-Bong;Kim, Soo-Tae
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.8-13
    • /
    • 1997
  • Generally, A motor integrated spindle is selected to perform the high speed machining, to improve the machining flexibility, and to simplify the structure of machine tools. The thermal deformation caused by heat generation of the integrated motor is, however, serious problem in motor integrated spindle system. In this study, cooling characteristics for the several kinds of cooling systems(such as, oil-jacket cooling, air cooling) are investigated and more efficient cooling method is presented. The results show that the shaft cooling by the air cooling system is effective to improve the thermal characteristic of motor integrated spindle.