• Title/Summary/Keyword: High-Definition Road Maps

Search Result 15, Processing Time 0.029 seconds

A Study On the Renewal System of Domestic High Definition Maps (우리나라 정밀도로지도의 갱신체계에 관한 연구)

  • SEOL, Jae-Hyuk;LEE, Won-Jong;CHOI, Yun-Soo;JEONG, In-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.133-145
    • /
    • 2019
  • Building and researching high definition maps that support autonomous vehicles, one of Korea's key challenges for the future, are being actively propelled in both private and government sectors with the goal of fast commercialization. Under this perspective, update methods that secure up-to-date information are emerging as key tasks. To provide a plan for establishing efficient renewal systems for high definition maps, we analyzed the present condition of road types, causes of road changes and its annual change rates, and examined where and how such road change information is managed. Furthermore, the method of collection and detection of road change information and the renewal system of high definition maps are defined based on the current study. At the end of the paper, a step-by-step renewal system is proposed through the examination of renewal cycles, contents, and region of high definition maps.

Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps (정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.363-369
    • /
    • 2021
  • High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.

Automatic Construction of Deep Learning Training Data for High-Definition Road Maps Using Mobile Mapping System (정밀도로지도 제작을 위한 모바일매핑시스템 기반 딥러닝 학습데이터의 자동 구축)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.

Establishment of Point Cloud Location Accuracy Evaluation Facility for Car-mounted Mobile Mapping System for Mapping of High Definition Road Maps (정밀도로지도 제작을 위한 이동식차량측량시스템(MMS) 점군 위치정확도 성능평가 시설 구축)

  • Oh, Yoon Seuk;Kwon, Young Sam;Park, Il Suk;Hong, Seung Hwan;Lee, Ha Jun;Lee, Tae Kyeong;Chang, Soo Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2020
  • Car-mounted MMS (Mobile Mapping System) is the most effective tool for mapping of high definition road maps(HD Map). The MMS is composed of various sensor combinations, and the manufacturing methods and processing software are different for each manufacturer, performance cannot be predicted only by the specifications of the parts. Therefore, it is necessary to judge whether each equipment is suitable for mapping through performance evaluation, and facilities for periodic performance evaluation. In this paper, we explained the MMS performance evaluation facilities built at the SOC Evaluation Research Center of Korea Institute of Civil Engineering and Building Technology and analyzed the conditions that the evaluation facilities should have through a literature survey and field tests.

High-Definition Map-based Local Path Planning for Dynamic and Static Obstacle Avoidance (동적 및 정적 물체 회피를 위한 정밀 도로지도 기반 지역 경로 계획)

  • Jung, Euigon;Song, Wonho;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.112-121
    • /
    • 2021
  • Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.

Study on Map Building Performance Using OSM in Virtual Environment for Application to Self-Driving Vehicle (가상환경에서 OSM을 활용한 자율주행 실증 맵 성능 연구)

  • MinHyeok Baek;Jinu Pahk;JungSeok Shim;SeongJeong Park;YongSeob Lim;GyeungHo Choi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2023
  • In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.

A Study on Building the HD Map Prototype Based on Web GIS for the Generation of the Precise Road Maps (정밀도로지도 제작을 위한 Web GIS 기반 HD Map 프로토타입 구축 연구)

  • KWON, Yong-Ha;CHOUNG, Yun-Jae;CHO, Hyun-Ji;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.102-116
    • /
    • 2021
  • For the safe operation of autonomous vehicles, the representative technology of the 4th industrial revolution era, a combination of various technologies such as sensor technology, software technology and car technology is required. An autonomous vehicle is a vehicle that recognizes current location and situation by using the various sensors, and makes its own decisions without depending on the driver. Perfect recognition technology is required for fully autonomous driving. Since the precise road maps provide various road information including lanes, stop lines, traffic lights and crosswalks, it is possible to minimize the cognitive errors that occur in autonomous vehicles by using the precise road maps with location information of the road facilities. In this study, the definition, necessity and technical trends of the precise road map have been analyzed, and the HD(High Definition) map prototype based on the web GIS has been built in the autonomous driving-specialized areas of Daegu Metropolitan City(Suseong Medical District, about 24km), the Happy City of Sejong Special Self-Governing City(about 33km), and the FMTC(Future Mobility Technical Center) PG(Proving Ground) of Seoul National University Siheung Campus using the MMS(Mobile Mapping System) surveying results given by the National Geographic Information Institute. In future research, the built-in precise road map service will be installed in the autonomous vehicles and control systems to verify the real-time locations and its location correction algorithm.

High Definition Road Map Object usability Verification for High Definition Road Map improvement (정밀도로지도 개선을 위한 정밀도로지도 객체 활용성 검증)

  • Oh, Jong Min;Song, Yong Hyun;Hong, Song Pyo;Shin, Young Min;Ko, Young Chin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2020
  • As the 4th Industrial Revolution era in worldwide, interest in autonomous vehicles is increasing. but due to recent safety issues such as pedestrian accidents and car accidents, as a technical model for this, the demand for 3D HD maps (High Definition maps) is increasing in including lanes, road markings, road information, traffic lights and traffic signs etc. However, since some complementary points have been continuously raised according to demand, It is necessary to collect the opinions of institutions and companies utilizing HD maps and to improve HD maps. This study was conducted by utilizing the results of the contest for usability verification of HD Maps hosted by the National Geographic Information Institute and organized by the Spatial Information Industry Promotion Institute. For this study, we researched HD maps' layers and codes for HD maps object usability to improve HD maps, constructed HD maps object usability items accordingly, and contested usability verification of HD maps according to the items The contestants conducted verification and analyzed the results. As a result, the most frequently used code for each layer was the flat intersection, and the code showing the highest usage rate was a safety sign. In addition, the use rate of the sub-section and height obstacles was 16.67% and 8.88%, respectively, showing a low ratio. In order to utilize HD maps in the future, this study is expected to require research to continuously collect opinions from customers and improve data objects and data models that are actually needed by customers.

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.

Development of lane-level location data exchange framework based on high-precision digital map (정밀전자지도 기반의 차로 수준의 위치정보 교환 프레임워크 개발)

  • Yang, Inchul;Jeon, Woo Hoon
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1617-1623
    • /
    • 2018
  • It is necessary to develop a next generation location referencing method with higher accuracy as advanced technologies such as autonomous vehicles require higher accuracy of location data. Thus, we proposed a framework for a lane-level location referencing method (L-LRM) based on high-precision digital road network map, and developed a tool which is capable of analyzing and evaluating the proposed method. Firstly, the necessity and definition of location referencing method was presented, followed by the proposal of an L-LRM framework with a fundamental structure of high-precision digital road network map for the method. Secondly, an architecture of the analysis and evaluation tool was described and then the Windows application program was developed using C/C++ programming language. Finally, we demonstrated the performance of the proposed framework and the application program using two different high precision digital maps with randomly generated road event data.