• Title/Summary/Keyword: High wind-resistant performance

Search Result 11, Processing Time 0.022 seconds

Performance-based Wind-resistant Design for High-rise Structures in Japan

  • Nakai, Masayoshi;Hirakawa, Kiyoaki;Yamanaka, Masayuki;Okuda, Hirofumi;Konishi, Atsuo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.271-283
    • /
    • 2013
  • This paper introduces the current status of high-rise building design in Japan, with reference to some recent projects. Firstly, the design approval system and procedures for high-rise buildings and structures in Japan are introduced. Then, performance-based wind-resistant design of a 300 m-high building, Abeno Harukas, is introduced, where building configuration, superstructure systems and various damping devices are sophisticatedly integrated to ensure a higher level of safety and comfort against wind actions. Next, design of a 213 m-high building is introduced with special attention to habitability against the wind-induced horizontal motion. Finally, performance-based wind-resistant design of a 634 m-high tower, Tokyo Sky Tree, is introduced. For this structure, the core column system was adopted to satisfy the strict design requirements due to the severest level of seismic excitations and wind actions.

The Roofing System of High wind-Resistant Performance using Thermoplastic polyolefin and Electromagnetic Induction Technology (TPO 시트재와 유도가열공법을 적용한 고내풍성 지붕마감 공법)

  • Choi, Hee-Bok;Shin, Yoon-Seok;Choi, Jin-Cheol;Lee, Bo-Hyeong;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • Strong winds according to global warming cause the increase of the frequency and the repair cost of damaged roofs. In the United States, Factory Mutual Insurance Company(FMIC) promotes the roofing design that resists heavy wind-load, as the means of strict criteria. This fact reveals that more durable roofing system will be also required in Korea. Therefore, this study aims at developing such a system with high wind-resistance performance using Thermoplastic polyolefin(TPO) and Electromagnetic induction technology(EIT) than the previous systems. The system presented in this study consists of 4 main devices as follow; 1) a disc to fix sheets for TPO & EIT method, which can conduct structural design according to site condition, such as region, building height, and wind load. 2) a nail to have about 30% stronger lifting-up capacity than that of the previous nail. 3) a disc to fix sheets, which has triangle protuberance not to damage sheets in the repeatable wind load, and 4) a electromagnetic induction device to combine a disc and a sheet by heating uniformly and quickly adhesive agent on the disc. The results of mock-up test illustrate that the system provides wind-resistant performance to achieve satisfactorily the structural design criteria of FMIC. In addition, the system is faster, chipper, and easier than the existing system, and is expected that this roofing system can be applied to the rehabilitations of an existing as well as a new building.

Wind-induced vibration of a cantilever arch rib supported by a flexible cable system

  • Hang Zhang;Zilong Gao;Haojun, Tang;Yongle Li
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.71-84
    • /
    • 2024
  • The wind-resistant performance of bridges is generally evaluated based on the strip assumption. For the arch rib of arch bridges, the situation is different due to the curve axis and the variable cross-sectional size. In the construction stage, the arch rib supported by a cable system exhibits flexible dynamic characteristics, and the wind-resistant performance attracts specially attention. To evaluate the wind-induced vibration of an arch rib with the maximum cantilever state, the finite element model was established to compute the structural dynamic characteristics. Then, a three-dimensional (3D) fluid-solid coupling analysis method was realized. After verifying the reliability of the method based on a square column, the wind-induced vibration of the arch rib was computed. The vortex-induced vibration (VIV) performance of the arch rib was focused and the flow field characteristics were discussed to explain the VIV phenomenon. The results show that the arch rib with the maximum cantilever state had the possibility of VIV at high wind speeds but the galloping was not observed. The lock-in wind speeds were larger than the results based on the strip assumption. Due to the vibration of arch rib, the frequency of shedding vortices along the arch axis trended to be uniform.

Braking performance of working rail-mounted cranes under wind load

  • Jin, Hui;Chen, Da
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Rail-mounted cranes can be easily damaged by a sudden gust of wind while working at a running speed, due to the large mass and high barycenter positions. In current designs, working rail-mounted cranes mainly depend on wheel braking torques to resist large wind load. Regular brakes, however, cannot satisfactorily stop the crane, which induces safety issues of cranes and hence leads to frequent crane accidents, especially in sudden gusts of wind. Therefore, it is necessary and important to study the braking performance of working rail mounted cranes under wind load. In this study, a simplified mechanical model was built to simulate the working rail mounted gantry crane, and dynamic analysis of the model was carried out to deduce braking performance equations that reflect the qualitative relations among braking time, braking distance, wind load, and braking torque. It was shown that, under constant braking torque, there existed inflection points on the curves of braking time and distance versus windforce. Both the braking time and the distance increased sharply when wind load exceeded the inflection point value, referred to as the threshold windforce. The braking performance of a 300 ton shipbuilding gantry crane was modeled and analyzed using multibody dynamics software ADAMS. The simulation results were fitted by quadratic curves to show the changes of braking time and distance versus windforce under various mount of braking torques. The threshold windforce could be obtained theoretically by taking derivative of fitted curves. Based on the fitted functional relationship between threshold windforce and braking torque, theoretical basis are provided to ensure a safe and rational design for crane wind-resistant braking systems.

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

A Simulation on the Performance of Durability in a Polymer Solar Glazing Design

  • Cahyono, Sukmaji Indro;Eom, Han-Saem;Ryu, Nam-Jin;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.331-336
    • /
    • 2012
  • Nowaday the conventional solar collector material prices are rising up because of pricy metal material over the world. The solar collector is too expensive to recycle to save the earth. Advanced polymer research is founded a high thermal resistant polymer and also it has high sun energy transmission. It also has cheaper material and easy manufacturing process, compare with conventional solar collector material. This paper is focussing on glazing simulation of polymer solar collector against wind pressure. The modeling geometry of polymer solar glazing are purposed by single layer, double layer hollow, zig-zag and tower. A simulation by using the Finite Volume was conducted to get Factor of Safety (FoS). The purpose of this paper is to find the best polymer glazing design, which can be as reference for the solar collector company to build Polymer. Hope fully new model of polymer solar collector has cheap, light, high sun energy transmitter, easy to be made and strong against wind force characteristics.

  • PDF

Performance Evaluation of the Drift Control in Residential Tall Building Using the Dampers (제진장치를 적용한 초고층 주거형 건축물의 횡변위 제어 성능 평가)

  • Park, Ji-Hyeong;Kim, Tae-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2008
  • The problem controlling lateral drift by the wind and the earthquake is very important in high rise buildings. But, outrigger system, generally used for residential tall buildings in Korea, has weak points with the occupancy of special space, the difficult construction and the long duration of works. On the other hand, the damper reduces story drifts of building structure by absorbing vibration energy induced by the dynamic loads and the application of damper systems is relatively simple. Also, the lateral drift control system such as outrigger system may raise the wind vibration problem of serviceability like human comfort and this problem may need another vibration control devices. Accordingly, we analyze the effect of the drift control using various dampers to substitute for outrigger system as the efficient system in residential tall buildings.

An Experimental Study on the Manufacturing Method and Performance of Planar Thick Film Heaters for Electric Vehicle Heating (전기자동차의 난방용 면상 후막히터의 제조방법과 성능에 관한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.685-692
    • /
    • 2024
  • Currently used heating elements are metal and non-metal heating elements, including various types of heaters, and resistance line heating elements have a problem of decreasing thermal efficiency over time, so to solve this problem, a planar heating element using high-purity carbon materials and oxidation-resistant inorganic compounds was applied. Through the manufacture of planar heating elements using CNT, ruthenium composite materials, and ruthenium oxide, physicochemical performance and capacity were increased, and instantaneous responsiveness was increased. Through thick film technology applicable to various base bodies, fine patterns were formed by the screening method in consideration of the fact that the performance of the heat source depends on the viscosity and pattern shape. The heating element was manufactured by thick film printing technology by mixing ruthenium oxide, CNT, Ag, etc. The characteristics of each paste were analyzed through viscosity measurement, and STS 430 was used as a base. Surface temperature and efficiency were measured by testing heaters manufactured for small wind tunnels and real-vehicle experiments. The surface temperature decreased as the air volume increased, and the optimal system boundary was found to be about 200 mm. Among the currently used heating elements, this paper manufactured a planar heating element using thick film technology to find out the relationship between air volume and temperature, and to study the surface temperature.