• Title/Summary/Keyword: High water pressure

Search Result 1,951, Processing Time 0.034 seconds

Development of high pressure water blocking conductor for EHV XLPE Cable (초고압 XLPE 케이블 고 수압 수밀 도체 개발)

  • Ha, Jae-Chung;Paek, Huem-Soo;Choi, Bong-Nam;Kim, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1789-1791
    • /
    • 2001
  • Recently, Water Blocking Conductor have been used to basic specification at the EHV XLPE Cable, GlobalIy. The area of Middle East have need of severe test condition than existing the Water Penetration Test, specially. In this paper, compare with and investigate the Water Penetration Test's each standard, describes the development Water Blocking Conductor in the high water-pressure for the EDF HN 33-S-51's Water Penetration Test passing.

  • PDF

Research of Novel Water Cooling Jacket for Explosion-proof Motor

  • Wang, Yu;He, Huiming;Bai, Baodong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-71
    • /
    • 2014
  • The well tightness of the coal mining water-cooling explosion-proof motor results in difficult heat dissipation, high hydraulic pressure is needed to increase the cooling effect. However, high hydraulic pressure may lead motor shell to deform, which makes it difficult to change the motor and maintain the motor unit. The method of adding keyhole caulk weld spots on the outer cooling water jacket was proposed to solve the problem. Based on the elasticity mechanics equations and the principle of finite element method the stresses and the deformations of the traditional and novel outer cooling water jacket were calculated separately. A hydraulic pressure experiment of the both cooling water jackets was constructed. Obviously, the stress and the deformation of the novel cooling water jacket are lower. The experimental result is consistent with the simulation results. It is effective to reduce the stress and the deformation of the cooling water jacket by adding the keyhole caulk weld spots.

A Study of Bulk Modulus of Beryl Using Water as a Pressure-Transmitting Medium (물을 압력 매개체로 이용한 녹주석의 체적탄성률 연구)

  • Hwang, Gil Chan;Kim, Hyunho;Lee, Yongjae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • In-situ high-pressure and ex-situ high temperature-pressure experiments of natural beryl ($Be_3Al_2Si_6O_{18}$, P6/mcc) from two different localities (beryl-A and beryl-B) were studied using pure water as pressure transmitting medium. Compared to the previous study using a mixture of methanol:ethanol medium in 4 : 1 by volume, pressure- and temperature-induced chemical and structural changes under water medium are expected to be different. The derived bulk moduli are 111(7) GPa, $K{_0}^{\prime}=73(7)$; 110(9) GPa, $K{_0}^{\prime}=65(8)$ for beryl-A and beryl-B, respectively. We observe densifications in volume compression, which appear to be attributed to the phase transitions of water to ICE VI and ICE VII around 1.0 GPa and 2.5 GPa, respectively.

Development of Hijiki-based Edible Films Using High-pressure Homogenization (고압 균질기를 이용한 가식성 톳 필름 개발)

  • Lee, Han-Na;Min, Sea-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Edible biopolymer films were developed from hijiki ($Hizikia$ $fusiforme$), using a high-pressure homogenization (HPH). Effects of pressure and pass number of HPH on color, tensile, moisture barrier properties, flavor profiles, and microstructure of hijiki films were investigated. A hydrocolloid of hijiki was processed by HPH at 69, 103, or 152 MPa with 1, 2, or 3 passes. A hijiki-base film was formed by drying a film-forming solution which was prepared by mixing of the HPH-processed suspension with glycerol and Polysorbate 20. Tensile strength and elastic modulus increased with increasing HPH pressure. Uniformity of the films increased as the pressure of HPH with 1 pass increased and the number of pass increased at 152 MPa. Water vapor permeability ($2.1-3.3g{\cdot}mm/kPa{\cdot}h{\cdot}m^2$) and water solubility (0.4-1.0%), which are relatively low compared to those of many other edible films, show the potential that hijiki-base films are applied to the range of low to intermediate moisture food as wrapping or coating.

Considerations to design high-pressure membrane system to produce high quality potable water with lower organic matter concentration (유기물 농도가 낮은 고품질 정수 생산을 위한 고압막여과 공정 설계 시 고려사항)

  • Jeon, Jongmin;Kim, Seong-Su;Seo, Inseok;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.473-480
    • /
    • 2020
  • High-pressure membrane system like nanofiltration(NF) and reverse osmosis(RO) was investigated as a part of water treatment processes to produce high quality potable water with low organic matter concentration through membrane module tests and design simulation. River water and sand filtration permeate in Busan D water treatment plant were selected as feed water, and NE4040-90 and RE4040-Fen(Toray Chemical Korea) were used as NF and RO membranes, respectively. Total organic carbon(TOC) concentrations of NF and RO permeates were mostly below 0.5 mg/l and the average TOC removal rates of NF and RO membranes were 93.99% and 94.28%, respectively, which means NF used in this study is competitive with RO in terms of organic matter removal ability. Different from ions rejection tendency, the TOC removal rate increases at higher recovery rates, which is because the portion of higher molecular weight materials in the concentrated raw water with increasing recovery rate increases. Discharge of NF/RO concentrates to rivers may not be acceptable because the increased TDS concentration of the concentrates can harm the river eco-system. Thus, the idea of using NF/RO concentrate as the raw water for industrial water production was introduced. The design simulation results with feed water and membranes used in this work reveal that the raw water guideline can be satisfied if the recovery rate of NF/RO system is designed below 80%.

The review about ultra long subsea tunnel design under high water pressure (고수압 초장대 해저터널에 관한 연구)

  • Jun, Duk-Chan;Kim, Ki-Lim;Hong, Eui-Joon;Kim, Chan-Dong;Lee, Young-Joon;Hong, Cheor-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.829-843
    • /
    • 2017
  • Subsea tunnel needs to be built over 50 km long to connect between nations and continents. However there are only 19 tunnels longer than 5 km until recently. And there is no history of constructing and operating tunnel longer than 50 km. In Korea, subsea tunnels with a length of more than 50 km are being planned, such as Korea~Japan, Korea~China, Honam~Jeju subsea tunnels. Because of the geographical conditions of Korea, most of these tunnels are inter-contry tunnels. So technology preemption for the subsea tunnel construction is getting more and more important. Most of these subsea tunnels are ultra-long tunnels under high water pressure conditions. So new technologies are required such as ventilation and disaster prevention of high-speed tunnels, securing of structural stability under high pressure conditions, and pressure reduction in high-speed conditions. These technologies are different from those of ground tunnels. Therefore, this paper describes the ultra-long subsea tunnel design under high water pressure of maximum 16 bars through the Honam (land) - Jeju (island) virtual subsea project. We proposed a reasonable solution to various problems such as securing structural stability in high pressure condition and ventilation disaster prevention system of ultra long-tunnel.

Relationship between Winter Water Temperature in the Eastern Part of the Yellow Sea and Siberian High Pressure and Arctic Oscillation

  • Jung, Hae Kun;Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1425-1433
    • /
    • 2012
  • Water temperature in the eastern part of the Yellow Sea (EYS) during winter (JFM) and summer (JJA) from 1964 to 2009 and Siberian High Pressure Index (SHI) and Arctic Oscillation index (AOI) during winter (JFM) from 1950 to 2011 were used to analyze long-term variation in oceanic and atmospheric conditions and relationship between winter and summer bottom water temperature. Winter water temperature at 0, 30 and 50 m had fluctuated highly till the late of 1980s, but after this it was relatively stable. The long-term trends in winter water temperature at both depths were separated with cold regime and warm regime on the basis of the late 1980s. Winter water temperature at 0m and 50m during warm regime increased about $0.9^{\circ}C$ and $1.1^{\circ}C$ respectively compared to that during cold regime. Fluctuation pattern in winter water temperature matched well with SHI and AOI The SHI had negative correlation with water temperature at 0 m (r=-0.51) and 50 m (r=-0.58). On the other hand, the AO had positive correlation with Winter water temperature at 0 m (r=0.34) and 50 m (r=0.45). Cyclic fluctuation pattern of winter water temperature had a relation with SHI and AO, in particular two to six-year periodicity were dominant from the early of the 1970s to the early of the 1980s. Before the late of 1980s, change pattern in winter water temperature at 0 and 50 m was similar with that in the bottom water temperature during summer, but after this, relationship between two variables was low.

MORPHOLOGICAL CHARACTERISTICS OF NONLINEAR OPTICAL MOLECULES AT THE AIR/WATER INTERFACE

  • Lim, Sung-Taek;Park, Mi-Kyung;Shin, Dong-Myung;Kwon, Ohoak
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1998
  • The texture change of non-linear optical molecules at the air/water interface was investigated as a function of surface pressure with Brewster angle microscopy. The texture change resulted from the aggregation of dye molecules is important to understand the film uniformity and grain formation process. The 4-Octadecylhydroxy-4'-nitrostilbene (OHNS) generated the small spots of size around 1$\mu$m. The spots exhibit high contrast with other film area and do not show angle dependent reflectivity change. It is interesting to observe that the size of the domain stays the same as the film pressure increases. At high surface pressure, the contrast ratio of domains becomes high, which means dense packing of OHNS. And, the size of domain grows. In the middle of domain, highly contrasted domains are formed. The first and the second order transitions of OHNS observed from surface pressure-area isotherm result from the two types of grains. The N,N-Dihexadecylcyanoaniline (DHCA) formed highly contrasted gains over entire region, and the grains are the double layers. The difference in Langmuir film of OHNS and DHCA at the air/water interface is consistent with the small tilt angle from the surface normal for OHNS and the large tilt angle for DHCA in the Langmuir-Blodgett films.

  • PDF

Effect of Injection Pressure of Water-in-Oil Emulsified Fuel on the Combustion Characteristics (유화연료의 분사압력이 연소특성에 미치는 영향)

  • Hwang, S.H.;Bae, H.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.38-45
    • /
    • 2003
  • This study was carried on the combustion characteristics of a pure light oil and emulsified fuels at high-pressure injection in a spray combustion installation, The volume fractions of water in an emulsion were varied up to 30% and the injection pressures were 7.5, 100, 200, and $300kg_f/cm^2$. The concentrations of NOx and the average temperatures of flame were measured. And Images of OH radical using ICCD camera and instantaneous schlieren photography of flames were photographed. It was found that the temperature distribution of axial distance in the emulsified fuels was increased in the upstream and decreased in the down stream. The temperature distribution of radial distance was high at the peripheral regions of the spray in the upstream and at the central regions of spray in the downstream, The intensity of OH radical was denser at the water content 10% than at the pure light oil over the injection pressure $200kg_f/cm^2$.

  • PDF

An Experimental Study on the Application for High Pressure Spray by Heat Cycle Type Equipment to Improve Work Safety and Workability of Asphalt Water Proofing method. (아스팔트 방수공법의 시공성 및 작업안전성 개선을 위한 열순환 방식의 고압 분사장치 적용에 관한 실험적 연구)

  • Chung, Chang-Pyo;Song, Je-Young;Lee, Sun-Kyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.33-39
    • /
    • 2009
  • Asphalt waterproofing method has a long history over 80years since introduce to domestic market. This method has a good point as high water proofing not permeable to water by material performance of bitumen, In spite of high waterproofing, the application has become decreased. This asphalt method has some problem such as work safety, low workability by complicated work process, environmental problem in job site, it should be solve by complementary measures. 'Therefore, in this paper, suggest the principle of high pressure spray by heat cycle type equipment by analysis of exist problem and materials investigation. And. study and examine the spray type degeneration rubberized asphalt membrane materials to adopt job site. Moreover, suggest the evidence by inspection about waterproofing performance by Korean Industrial Standard through the performance test of the spray type degeneration rubberized asphalt membrane materials.

  • PDF