• 제목/요약/키워드: High voltage battery pack

검색결과 26건 처리시간 0.024초

특수임무 차량 배터리 팩 진동/충격 저감 설계에 대한 연구 (Study of the Vibration and Shock Isolation for HEV Battery Pack)

  • 김만달;장덕진;이승준;홍성욱
    • 한국정밀공학회지
    • /
    • 제33권10호
    • /
    • pp.813-820
    • /
    • 2016
  • Hybrid Electric Vehicles (HEVs) are developed to be operated with two kinds of power source (Diesel Engine and Electric Motor with Rechargeable High Voltage Battery Pack). HEVs for military vehicle require high reliability to provide stable powers under serious environment such as vibration and shock. To ensure normal operation of battery pack under serious environment such as vibration and shock, the high voltage battery pack needs to have appropriate dynamic characteristics. This paper presents a design procedure for high voltage battery pack with such characteristics. An isolator design is proposed to reduce vibration and shock. Associated random vibration and shock response of the high voltage battery pack are simulated under conditions suggested by MIL specifications. Its dynamic characteristics and vibration and shock responses are validated with experiments.

다중선형회귀모델 기반 고출력 직렬 배터리 팩의 전압 불균형 추정 (Multiple linear regression model-based voltage imbalance estimation for high-power series battery pack)

  • 김승우;이평연;한동호;김종훈
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2019
  • 본 논문에서는 18650 원통형 NCA 리튬이온 배터리로 구성된 고출력 직렬 배터리로 다양한 C-rate의 전기적 특성을 테스트한다. 테스트를 통해 추출한 14S1P 배터리 팩의 방전 용량 데이터와 4S1P 배터리 팩의 EV cycle 데이터를 통해 C-rate의 변화에 따른 전기적 특성을 분석한다. 분석을 통해 얻은 데이터를 기반으로 C-rate에 따른 방전용량 실험의 셀 간 전압 편차와 EV cycle 실험의 셀 간 전압 편차를 다중선형회귀 모델로 추정하여 선형적인 특징을 가진 데이터와 비선형적인 특징을 가진 데이터에 대한 각각의 추정성능을 검증한다. 모델의 추정성능을 검증하기 위해 추정 데이터와 실제 데이터의 RMSE를 구해 알고리즘의 정확성을 평가한다. 논문의 결과는 14S1P 배터리 팩의 방전 용량의 셀 간 전압 불균형과 4S1P 배터리 팩의 EV cycle의 셀 간 전압 불균형 중 선형적인 데이터인 방전 용량의 셀 간 불균형 데이터의 추정 성능이 더 뛰어난 것을 검증하는데 기여한다.

에너지 저장용 Li-Ion 배터리 팩의 열적 성능 평가에 관한 연구 (A Research on the Assessment of Thermal Performance of Energy Storage Li-Ion Battery Pack)

  • 장혁;장경민;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제13권1호
    • /
    • pp.101-108
    • /
    • 2014
  • The battery pack in this research consists of dozens of a small battery for energy storage. And this battery pack charges and discharges repeatedly at high capacity (25 ~ 50 V, 25 ~ 100 A). The high temperature which can be generated in this process has a bad effect to the lifetime and efficiency of batteries. Moreover these factors are related with maintenance cost. Therefore, we need to assess the thermal performance of the battery pack in advance using the experimental or numerical analysis. In this research, we analyzed voltage and surface temperature of one cell battery to calculate heat transfer using the numerical analysis. And the temperature of the battery surfaces and inside of the pack was also analyzed. As a result, we found out the appropriate pack structure which stacked five modules.

고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기 (A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack)

  • 굴 라힘;최우진
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.

Parameter Design and Power Flow Control of Energy Recovery Power Accumulator Battery Pack Testing System

  • Bo, Long;Chong, Kil To
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.787-798
    • /
    • 2013
  • This paper proposes a special power circuit topology and its corresponding control strategy for an energy recovery power accumulator battery pack testing system (PABPTS), which is particularly used in electric vehicles. Firstly, operation principle and related parameter design for the system are illustrated. Secondly, control strategy of the composite power converter for PABPTS is analyzed in detail. The improved scheme includes a high accuracy charge and discharge current closed loop. active power reference for the grid-side inverter is provided by the result of multiplication between battery pack terminal voltage and test current. Simulation and experimental results demonstrate that the proposed scheme could not only satisfy the requirements for PABPTS with wide-range current test, but also could recover the discharging energy to the power grid with high efficiency.

배터리 팩 간의 순환전류 방지를 위한 양방향 DCDC 컨버터 연구 (Study of bidirectional DCDC converter to prevent circulating current between battery packs)

  • 이승현;주성준
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.695-703
    • /
    • 2019
  • 본 논문에서는 배터리 팩을 구성하는데 있어 높은 전압의 직렬 연결된 배터리 모듈의 병렬 연결에서 발생할 수 있는 순환 전류를 제거하는 방법을 제시하였다. 제거 방법은 배터리 팩의 구성상에 있어서 양방향 DCDC 컨버터와 슈퍼 캐패시터를 이용한 VVSM(Variable Voltage Variable Module)이라고 명명한 모듈을 직렬 연결된 배터리 셀들 중 하나 대신에 삽입하는 방식인데 VVSM은 이 모듈에서 마치 우리가 원하는 전압으로 제어할 수 있는 배터리 셀처럼 동작한다. 전압을 가변할 수 있는 배터리 셀(VVSM)을 이용하여 직렬 연결된 배터리 모듈의 전압을 아주 손쉽게 일치시킬 수 있었다. 제시한 방법을 증명하기 위해 배터리를 모형화한 모델을 이용하여 모의 실험을 시행 하였다. 또한 직렬 연결된 배터리 셀 만으로 된 모듈과 제안한 VVSM이 적용된 모듈을 실제 제작하여 두 모듈을 병렬 연결하여 둘 사이에 순환 전류를 측정하여 비교함으로써 제안된 방법이 효과적으로 순환 전류을 억제할 수 있음을 검증하였다.

이차 팩 전지를 위한 급속 충전 알고리즘에 관한 연구 (The Study of High Speed Charging Algorithm for Secondary Pack Battery)

  • 이현희;이영석;여운진;황상문;김성곤;진달복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2649-2652
    • /
    • 2002
  • In this paper, a high speed charging algorithm that charges secondary pack battery within 40 minutes is implementation. Proposed algorithm is that suppling 4 stage pulse instead of constant voltage or current. That makes charge time short, temperature low, and extends battery life. Experimental results show that secondary pack battery is charged within 40 minutes and achieved life time about 2000 cycle.

  • PDF

건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구 (SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack)

  • 이평연;권상욱;강덕훈;한승윤;김종훈
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.

리튬이온전지를 이용한 노트북 PC용 고성능 Smart Battery의 개발 (Development of High-Performance Smart Battery for Notebook PCs with Lithium Ion Battery)

  • 김현수;문성인;윤문수;고병희;김동훈
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.1047-1054
    • /
    • 2003
  • Smart battery pack (SBP) for notebook PCs was developed using a cylindrical-type lithium ion battery. Batteries were connected with three serial and two parallel, the nominal capacity and the maximum load of SBP was 4,000mAh and 4.0A, respectively. The SBP was composed of a protection IC, by which safety of lithium ion batteries is maintained against overcharge, overdischarge and overcurrent, and a smart IC, which calculates the remaining capacity and the remaining run time. In matching test on notebook PC using Battery Mark 4.0, real and smart data of END voltage coincided nearly and LB and LLB signal worked norma]]y. And there were errors of less than 1% between the real and the smart data on the residual capacity in the charge and discharge test.

A New Modularized Balancing Circuit for Series Connected Battery cells

  • Lee, Hyo-Jae;Jung, Young-Seok
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.193-199
    • /
    • 2014
  • The series connected battery cells are mainly used in high voltage battery pack application. However parameter inequality of each battery cell makes battery voltage imbalance problem. In this paper, a new balancing circuit utilizing converter scheme for the series connected battery cells is proposed. Proposed circuit offers easy control and fast equalization time. Moreover the circuit can be used in a practical application because it has high modularity and can operate during the charging/discharging cycle. To show its superiorness and effectiveness, the principle of proposed circuit is explained with computer simulation and experiment is carried out using lithium-ion battery.