• Title/Summary/Keyword: High temperature superconducting materials

Search Result 133, Processing Time 0.022 seconds

Effect of oxygen pressure on properties of $NdBa_2Cu_3O_{7-{\delta}}$ films on $SrTiO_3$ (100) substrates grown by pulsed laser deposition

  • Wee, Sung-Hun;Moon, Seung-Hyun;Park, Chan;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.9-12
    • /
    • 2004
  • We report a successful fabrication of high-$J_C$ $NdBa_2Cu_3O_{7-{\delta}}$ (NdBCO) films on (100) $SrTiO_3$ substrates by pulsed laser deposition (PLD) in high oxygen pressures ranging from 400 to 800 mTorr. Fabricated NdBCO films exhibited only c-axis orientation, good out-of-plane and in-plane textures, and also excellent superconducting properties, including critical temperature ($T_C$) and critical current density ($J_C$) of above 90 K and the highest of $3.1MA/cm^2$ at 77 K in self-field, implying that NdBCO is a perspective alternative to YBCO for coated conductor. In low oxygen pressures ranging from 100 to 200 mTorr, however, the films showed a-, c-mixed orientation and degraded $T_{C,zero}$ values due to the formation of $Nd_{1+x}Ba_{2-x}Cu_3O_{7-{\delta}}$-type solid solutions with an excessive substitution of $Nd^{3+}$ ions for the $Ba^{2+}$ sites.

Cryogenic milling for the fabrication of high Jc MgB2 bulk superconductors

  • Kim, D.N.;Kang, M.O.;Jun, B.H.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.19-24
    • /
    • 2017
  • Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density $(J_c)MgB_2$ bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg ($6-12{\mu}m$, 99.9 % purity) and plate-like B powder (${\sim}1{\mu}m$, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using $ZrO_2$ balls. The (Mg+2B) powders milled were pressed into pellets and heat-treated at $700^{\circ}C$ for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting $MgB_2$, reduced the grain size of $MgB_2$, and suppressed the formation of impurity MgO. The superconducting critical temperature ($T_c$) of $MgB_2$ was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density ($J_c$) of $MgB_2$ increased significantly when t increased to 4 h. When t increased further to 6 h, however, $J_c$ decreased. The $J_c$ enhancement of $MgB_2$ by cryogenic milling is attributed to the formation of the fine grain $MgB_2$ and a suppression of the MgO formation.

Effects of Additional Annealings via Josephson Weak-links on the Electrical Properties of Ceramic $YBa_2Cu_3O_{7-g}$ (부가적인 Annealing이 Josephson weak-links를 통하여 Ceramic 고온초전도체 $YBa_2Cu_3O_{7-g}$ 에 미치는 영향)

  • Jeong, D.Y.;Black, T.D.;Krichene, S.;Reynolds, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.287-290
    • /
    • 1989
  • Single-phase $YBa_2Cu_3O_{j-g}$ (YBC) ceramic samples were annealed at $700^{\circ}C$ under a flowing $O_2$ atmosphere for 0, 18, 36, 54 and 72. hours after sintering. The resistivities(p) and the critical current densities($J_c$) of the samples were measured in a temperature range 77 to 300 K by a four probe method, using silver paint contacts. The variations of the electrical properties with annealing time are explained in terms of flux pinning, percolation probability and randomness, and alignment of grains and twins.The anomalous increases in $J_c$ and $T_c$ observed in sample annealed for a relatively long time possibly due to alignment of grains and twins, may imply the occurrence of superconducting glass state in high-$T_c$ superconducting ceramic.

  • PDF

Test of a Current Limiting Module for Verifying of the SFCL Design (초전도 한류기 설계 검증을 위한 초전도 한류 모듈 단락 특성 시험)

  • Yang, S.E.;Kim, W.S.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.13-17
    • /
    • 2012
  • KEPCO Research Institute has been researching a Superconducting Fault Current Limiter (SFCL) which is considered one of solutions of fault current problems with Korea Institute of Machinery & Materials (KIMM) and Hanyang University since 2011. In this paper, we fabricated a current limiting module and conducted electrical short circuit tests for checking the validity of the transmission level SFCL design. Based on the short circuit characteristics of the second generation High Temperature Superconductor (HTS), we analyzed the short circuit characteristics of 3 parallel connected superconducting wires. The structure of the HTS wire is as follows: the stainless steel stabilizer of $100{\mu}m$ is laminated on the superconductor layer and under the substrate, both of which are electrically jointed with solder. We fabricated the current limiting module which has 40 series and 6 parallel connections and studied the short circuit characteristics of the module under various voltage levels.

Magnetic properties and Microstructure of YBa$_2Cu_3O_x$ High Temperature Superconducting Single Crystals Grown by Multi-seeding (Multiseeding 법으로 성장시킨 YBa$_2Cu_3O_x$ 고온초전도 단결정의 특성과 미세구조)

  • Han, Young-Hee;Sung, Tae-Hyun;Han, Sang-Chul;Lee, Jun-Seong;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.384-387
    • /
    • 1999
  • A new multi-seeding process for the growth of YBa$_2Cu_3O_x$ single crystals was developed. This process introduces an additional heating step to peritectic temperature and a subsequent slow cooling step to the growth temperature following the point when the crystals contacted. The crystal growth was resumed thereafter. The results obtained with this new process were compared with those of the conventional growth process, in which materials were only kept at the growth temperature. There was significant improvement in trapped magnetic field over the conventional multi-seeding process, which is believed to be due to complete elimination of liquid phase between crystals.

  • PDF

Optical Properties of Two Different Metallic NaxCoO2:x=0.35 and 0.75

  • Hwang, J.;Yang, J.;Timusk T.;Chou, F.C
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • We report optical ab-plane properties of the layered sodium cobaltate, $Na_xCoO_2$ for x = 0.35 and 0.75. Two samples show metallic behaviors according to dc resistivity transport. Overall temperature dependent optical conductivities of both samples are very similar to those of the high temperature superconducting underdoped cuprates. We found that the optical scattering rate of x = 0.75 sample, which is in a Curie-Weiss metallic phase, varies linearly (non-Fermi liquid) with frequency and temperature while that of x = 0.35 sample, which is in a paramagnetic metallic phase, varies quadratically (Fermi liquid) with frequency and temperature. Both x = 0.35 and 0.75 samples have an onset of scattering around $600\;cm^{-1}$ which can be attributed to the interaction of charge carriers with a bosonic collective mode in a system.

Preliminary study on the quench protection of Bi-22231 Ag tape using superconducting fault current limiter (초전도 한류기를 이용한 Bi-2223/Ag 선재의 퀜치 보호를 위한 기초 연구)

  • Du, Ho-Ik;Yim, Seong-Woo;Hyun, Ok-Bae;Hwang, Si-Dole;Cho, Chul-Yong;Park, Chung-Ryul;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.243-244
    • /
    • 2006
  • As an preliminary study for the quench protection of high temperature superconducting (HTS) cable using superconducting fault current limiter (SFCL), experimental research was carried out. The test circuit was composed of Bi-2223/Ag HTS tape and a SFCL made of YBCO thin films. In the normal state, the applied current of 56 A, which was critical current of HTS tape, could be flown through the circuit without resistive loss. Increasing the currents, the quench development of both materials was investigated from the voltage signal acquired from the resistance of the quenched superconductor. Up to around 10 times of the critical current was applied to the HTS tape and the current limiting characteristics of SFCL were investigated. In addition, for the finding out the optimal operating condition of SFCL such as the numbers of elements, a shunt resistor was applied to the SFCL and quench characteristics were analyzed as well.

  • PDF

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.

A study on the structural and electric properties of fluorinated $YBa_2Cu_3O_{7-y}$ (불소화된 $YBa_2Cu_3O_{7-y}$ 초전도체의 구조적, 전기적 성질에 관한 연구)

  • 김재욱;김채옥
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.404-409
    • /
    • 1996
  • The structural and electric properties of $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$(x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been investigated by using XRD(X-ray diffraction), TMA(thennomechanical analysis), NMR(nuclear magnetic resonance) analysis and four probe method. $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$ samples were prepared by conventional solid-state reaction method using $Y_{2}$O$_{3}$, BaCO$_{3}$, CuO and YbF$_{3}$ power. TMA and high temperature XRD results shows that orthorhombic to tetragonal phase transition occurs in the unfluorinated 1-2-3 sample while the phase change is not observed in the fluorinated 1-2-3 samples. Superconducting transition temperature(T$_{c}$) increases with increasing YbF$_{3}$ content ; T$_{c}$, of the sample reaching maximum of 102K for x=0.3, and then decreases with further increasing YbF$_{3}$ content. The structural analysis and T$_{c}$ results shows that the fluorine doping stabilize the orthorhombic phase, together with the increase in T$_{c}$.}$ c/.TEX> c/.

  • PDF

A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature (극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구)

  • ;Maekawa, I.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.