• Title/Summary/Keyword: High temperature property

Search Result 1,238, Processing Time 0.035 seconds

Mechanical Property of Segmented Block Copolyetherester Effected by Changing the Hard Segment(II) (하드 세그멘트 구조 변화가 세그멘트화 블록 코폴리에테르에스테르의 기계적 성질에 미치는 효과(II))

  • Kim, Hae-Young;Jang, Kyung-Ho;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.329-330
    • /
    • 2003
  • In general, the thermoplastic elastomers have the elastic recovery property caused by phyical crosslinks after the stress is applied. Segmented block copolyetheresters also have been used as elastomers. Many$\^$l-2/ tried to improve the elastic recovery of those which are less elastic than polyurethane. We confirmed that the copolyetherester based on poly(2,6-butylene naphthalate)(PBN) ha.4 segment had the high melting temperature, whcih was useable at the broader temperature range and the one based on poly(1,3-trimethylene terephthalate)(PTT) the high crystallinity, which would be expected to get the high elastic recovery. (omitted)

  • PDF

Effect of the Coarse Aggregate Volume by High Temperature Mechanical Properties of Ultra High Strength Concrete (굵은골재의 용적이 초고강도 콘크리트의 고온역학적특성에 미치는 영향)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong;Kim, Jung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.67-68
    • /
    • 2015
  • Recently, usage of ultra-high strengh concrete(UHSC) have been increased. Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Therefore, this study evaluated effect of the coarse Aggregate volume by high temperature mechanical properties of UHSC. Residual mechanical properties are evaluated under fine aggregate ratio 40,60% and 500℃ temperature on UHSC of W/B 15, 20%. As result, residual mechanical properties of UHSC are high by lower coarse aggregate volume.

  • PDF

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

Evaluation of Mechanical Properties of Carbon/Epoxy Composites Under In situ Low- and High-Temperature Environments (저온과 고온 환경 하에서 카본/에폭시 복합재의 기계적 물성 평가)

  • Im, JaeMoon;Shin, KwangBok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.567-573
    • /
    • 2015
  • This paper aims to evaluate the variation in the mechanical properties of carbon/epoxy composites under in situ low- and high-temperature environments. In situ low- and high-temperature environments were simulated with temperature ranging from $-40^{\circ}C$ to $220^{\circ}C$ using an environmental chamber and furnace. The variation in the mechanical properties of the composites was measured for longitudinal and transverse tensile properties, in-plane shear properties and interlaminar shear strength. Under the low temperature of $-40^{\circ}C$, all mechanical properties increased moderately compared to the baseline properties measured at room temperature. The changes in the longitudinal tensile properties decreased moderately with increasing temperature. However, transverse tensile properties, in-plane shear properties and interlaminar shear strength each showed a significant drop due to the glass transition behavior of the matrix after $140^{\circ}C$. Notably, the tensile property value near $100^{\circ}C$ increased compared to baseline property value, which was an unusual occurrence. This behavior was a direct result of post-curing of the epoxy resin due to its exposure to high temperature.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC (액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향)

  • JUNG HUN-CHAE;YOON HAN-KI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn (Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성)

  • Lee Jae Won;Lee Back-Hee;Lee Kyu Hwan;Kim Young Do
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

An Experimental Study on the Rheology Properties of Cement-Paste Due to Temperature (온도에 따른 시멘트 페이스트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Hee-Jung;Choi, Young-Jun;Kim, Jae-Hun;Kang, Hun;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.45-50
    • /
    • 1998
  • This study is aimed for investigating the rheology property and fluidity of superplasticizer which is necessary using for high flowing concrete fluidity establishment. Therefore, this study is analysis the rheology property and fluidity by different according temperature and elapsed time. From the results, the fluidity and rheology value were different according temperature. Over 2$0^{\circ}C$, the flow value of A, B, C, D, E type is increased, according as the increase of temperature, but the flow value of F type is decreased.

  • PDF

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

An Experimental Study for Performance Evaluation of a Ceramic Heat Exchanger (세라믹 열교환기의 성능평가를 위한 실험적 연구)

  • Choi, Hyun-Soo;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Exhaust gas of an industrial furnace used at such as metallurgy or ceramic manufacturing usually contains thermal energy with high temperature which can be recycled by heat exchanger. However, when the temperature of the exhaust gas is high such as more than $1,000^{\circ}C$, ordinary metallic heat exchanger cannot fully recover the heat due to the limitation of operating temperature depending on the material property. In the present study, a compact ceramic heat exchanger of cross flow type is introduced and evaluated by heat exchange rate and operating temperature. The ceramic heat exchanger can endure the gas temperature more than $1,300^{\circ}C$, and its volumetric heat exchanging rate exceeds 1 MW/$m^3$. The experimental data is also compared with the previous numerical result which shows reasonable agreement. Meanwhile, the gas leakage rate is measured to be about 3~4%, and heat loss to environmental air is about 23~26% of the fuel energy.