• Title/Summary/Keyword: High temperature property

Search Result 1,239, Processing Time 0.034 seconds

Measured data of thermophysical properties of concrete for a temperature range of $20^{\circ}C$ to $1100^{\circ}C$ (상온에서 $1100^{\circ}C$까지 온도변화에 따른 콘크리트의 열물성 측정치)

  • Shin, Ki-Yeol;Chung, Mo;Kim, Sang-Baik;Kim, Jong-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.596-606
    • /
    • 1998
  • Thermophysical properties and the compressive strength of concrete used in nuclear power plants in Korea were measured. The chemical composition of the concrete was also analyzed. The measured thermophysical properties include the density, the thermal conductivity, the thermal diffusivity and the specific heat for a wide temperature range of 20.deg. C to 1100.deg. C. The chemical composition of Korean concrete is similar to that of US basaltic concrete and the thermophysical properties are strongly temperature dependent. The density, the conductivity and the diffusivity decrease with an increase in temperature, and particularly the conductivity and the diffusivity are a 50-perdent decrease at 900.deg. C as compared with these values at room temperature. The specific heat increases until 500.deg. C, decreases from 700.deg. C to 900 .deg. C, and then increases again when temperature is above 900.deg. C. The measurement beyond 1100.deg. C is not acceptably accurate because the concrete decomposes to a liquid phase from a solid phase at that temperature. The results of this study can be applied, for example, to an analysis of the molten core-concrete interaction (MCCI) phenomenon of concrete structures at high temperature will also require those property data, especially for high temperature ranges.

Natural Dyeing of Fabrics with Guava (Psidium guajava L.) Leaf Extract III - Dyeability and Functional Property of Hanji Cotton Fabrics - (구아바 잎 추출액을 이용한 직물의 천연염색 III - 한지면직물의 염색성과 기능성 -)

  • Han, Mi Ran;Lee, Jeong Sook
    • Fashion & Textile Research Journal
    • /
    • v.14 no.5
    • /
    • pp.866-877
    • /
    • 2012
  • The natural dyeing of hanji cotton fabrics with guava leaf extract was investigated. The temperature and time of dyeing were $40^{\circ}C$ and $90^{\circ}C$ for eighty minutes, respectively. In addition, the dyebath has been set at pH 5. Sn pre-mordanted fabrics showed the highest K/S value. Regardless of dyeing temperature, K/S values were high when Al, Cu, Fe-mordanted fabrics were dyed in post-mordanting and Sn-mordanted fabrics in pre-mordanting. The dyeing equilibrium was shown at the fourth time of repeated dyeing. In the processing of hanji cotton fabrics, K/S value was high when hanji cotton fabric was treated with soybean milk at $90^{\circ}C$. Similar K/S value of dyeing was shown when fabrics were processed with chitosan, regardless of dyeing temperature. High K/S value of dyeing was seen when fabrics processed with gallnut tannin at 40. Fabrics dyed with acidic water extract showed yellowish color. Fabrics dyed with alkaline water extract showed reddish color, and fabrics dyed with ethanol extract showed greenish yellow color. In case of Sn-mordanted fabrics, the washing fastness level was between 3 to 4, and other dyed fabrics showed low fastness. The dry cleaning fastness also showed very excellent result with level 4-5. The rubbing fastness of the fabrics was better in dry rubbing than in wet rubbing. For the light fastness, all dyed fabrics showed low fastness. For antibacterial activity, the dyed fabrics with guava leaf extract showed 99.9% of high antibacterial activity. Hanji cotton fabric maintained certain deodorization in the state of raw fabric. All dyed fabrics showed higher UV protection rate than control fabric.

Effects of Moisture and Barrel Temperature of Extrusion Process on Physicochemical and Functional Properties of Specialty Rice Cultivars

  • Choi, In-Duck;Song, Jin;Lee, Choon-Ki;Kim, Kee-Jong;Suh, Sea-Jung;Son, Jong-Rok;Ryu, Gi-Hyung;Kim, Jae-Hyun
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.319-323
    • /
    • 2008
  • Mutant rice cv. Goami2 (G2) and Baegjinjoo (BJJ) derived from a high-quality japonica rice cv. Ilpumbyeo (IP) were extruded under different feed moisture (20 and 30%) and barrel temperature (90, 110, and $130^{\circ}C$). Increasing feed moisture at fixed barrel temperature increased extrudate density (ED) in IP and BJJ. Whereas, G2 showed a varied ED depending on extrusion conditions; increasing barrel temperature decreased the ED of G2 extrudate with low feed moisture, but increased with high moisture. Results indicated a positive barrcl temperature effect on volume expansion in IP and G2, but a negative effect on 811, probably due to shrinkage of expanded products containing low-amylose contents. A significant increase of water absorption was found in G2 and BJJ extruded flour, while an increase of water solubility in those from IP. Non-digestible carbohydrates measured by total dietary fiber (TDF) indicated that extrusion increased slightly TDF in IP and BJJ extrudates, but decreased in G2 products, which might be variety-dependent.

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation (Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성)

  • Song, O-Seong;Lee, Yeong-Min
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1042-1046
    • /
    • 2001
  • Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

  • PDF

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.

Dyeing and Mechanical Properties of 0.01d Polyester Ultramicro Fiber (0.01d 폴리에스테르 초극세 섬유의 염색성 및 역학적 성질)

  • Park, Jae-Min;Jeong, Dong-Seok;Rho, Hwan-Kown;Ryu, Hyun-Jae;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.10-15
    • /
    • 2006
  • In this article, effect of the dyeing and mechanical properties were investigated on the polyester ultramicro fiber(UMF) and knitted fabric varying fiber fineness(0.01d and 0.05d). By a treatment with NaOH solution, sea-ingredient was removed and polyester micro-fiber was revealed. The dyeing, build-up and fastness properties of the fiber and fabrics were observed. We used C.I. Disperse Red 60 and Blue 56 for dyeing property and eight Lumacron dyes for build-up property and colorfastness. At low temperature dyeing($100^{\circ}C$), the dyeing rate of 0.01d-polyester UME increased more than that of 0.05d-polyester UMF with Disperse Red 60 and Blue 56 whereas dyeing rate of 0.05d-polyester UMF were increased more than that of 0.01d-polyester UMF at high temperature($120^{\circ}C$), The colorfastnesses of the 0.05d-fiber knitted fabric such as washing, rubbing and light was higher than those of the 0.01d-fiber knitted fabric.