• Title/Summary/Keyword: High temperature pressure sensor

Search Result 167, Processing Time 0.026 seconds

Fabrication of polycrystalline 3C-SiC micro pressure sensors for hightemperature applications (초고온용 다결정 3C-SiC 마이크로 압력센서의 제작)

  • Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 2010
  • High temperature micro pressure sensors were fabricated by using polycrystalline 3C-SiC piezoresistors grown on oxidized SOI substrates by APCVD. These have been made by bulk micromachining under $1{\times}1mm^2$ diaphragm and Si membrane thickness of $20{\mu}m$. The pressure sensitivity of implemented pressure sensors was 0.1 mV/$V{\cdot}bar$. The nonlinearity and the hysteresis of sensors were ${\pm}0.44%{\cdot}FS$ and $0.61%{\cdot}FS$. In the temperature range of $25^{\circ}C{\sim}400^{\circ}C$ with 5 bar FS, TCS (temperature coefficient of sensitivity), TCR (temperature coefficient of resistance), and TCGF (temperature coefficient of gauge factor) of the sensor were -1867 ppm/$^{\circ}C$, -792 ppm/$^{\circ}C$, and -1042 ppm/$^{\circ}C$, respectively.

Fabrication of Ceramic Thin Film Type Pressure Sensors for High-Temperature Applications and Their Characteristics (고온용 세라믹 박막형 압력센서의 제작과 그 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.790-794
    • /
    • 2003
  • This paper describes the fabrication and characteristics of ceramic thin film type pressure sensors based on Ta-N strain gauges for high temperature applications. Ta-N thin-film strain gauges are deposited onto a thermally oxidized Si diaphragm by RF sputtering in an argon-nitrogen atmos[here($N_2$ gas ratio: 8%, annealing condition: 90$0^{\circ}C$, 1 hr.), patterned on a wheatstone bridge configuration, and used as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is 1.097 ~ 1.21 mV/Vㆍkgf/$\textrm{cm}^2$ in the temperature range of 25 ~ 200 $^{\circ}C$ and the maximum non-linearity resistance), non-linearity than existing Si piezoresistive pressure sensors. The fabricated ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that os operable under high-temperature.

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Fabrication of Micro Ceramic Thin-Film Type Pressure Sensors for High-Temperature Applications and Its Characteristics (고온용 마이크로 세라믹 박막형 압력센서의 제작과 그 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.888-891
    • /
    • 2003
  • This paper describes on the fabrication and characteristics of micro ceramic thin-film type pressure sensors based on Ta-N strain-gauges for high-temperature applications. The Ta-N thin-film strain-gauges are deposited onto thermally oxidized Si diaphragms by RF sputtering in an argon-nitrogen atmosphere($N_2$ gas ratio: 8 %, annealing condition: $900^{\circ}C$, 1 hr.), Patterned on a wheatstone bridge configuration, and use as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is $1.097{\sim}1.21mV/V.kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS. The fabricated pressure sensor presents a lower TCR, non-linearity than existing Si piezoresistive pressure sensors. The fabricated micro ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that is operable under high-temperature environments.

  • PDF

Design and Implementation of Wireless Sensor Network for Freeze Dryer

  • Cho, Young Seek;Kwon, Jaerock;Choi, Seyeong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • A wireless sensor network (WSN) is designed and implemented for a freeze dryer. Freeze-drying technology is widely used in the fields of pharmacy and biotechnology as well as the food and agriculture industries. Taking into account the demand for high-resolution pressure and temperature measurements in a freeze dryer, the proposed WSN has a significant advantage of creating a monitoring environment in a freeze dryer. The proposed WSN uses a ZigBee/IEEE 802.15.4 network with an altimeter module that contains a high-resolution pressure and temperature sensor with a serial digital data interface. The ZigBee network is suitable for low-energy and low-data-rate applications in the field of wireless communication. The altimeter module is capable of sensing pressure in the range of 7.5-975 Torr (10-1300 mbar) and temperature in the range of $-40^{\circ}C$ to $125^{\circ}C$ with a DC power consumption of $3{\mu}W$. The implemented WSN is installed in a commercial laboratory freeze dryer in order to demonstrate its functionality and efficiency. A comparison with the temperature profile measured by a thermocouple installed in the freeze dryer reveals that the resolution of the temperature profile measured by WSN is superior to that measured by the thermocouple.

Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications (표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

Characteristics of metal thin-film pressure sensors by on silicon thin-film mer (실리콘 박막 멤브레인상에 제작된 금속박막형 압력센서의 특성)

  • Choi, Sung-Kyu;Nam, Hyo-Duk;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1372-1374
    • /
    • 2001
  • This paper describes fabrication and characteristics of metal thin-film pressure sensor for working at high temperature. The proposed pressure sensor consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097 $\sim$ 1.21 mV/V kgf/$cm^2$ in the temperature range of 25 $\sim$ $200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Fabrication of a Micromachined Metal Thin-film Type Pressure Sensor for High Overpressure Tolerance and Its Characteristics (과부하 방지용 마이크로머시닝 금속 박막형 압력센서의 제작과 그 특성)

  • Kim, Jae-Min;Lim, Byoung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.192-196
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a metal thin-film pressure sensor based on Cr strain-gauges for harsh environment applications. The Cr thin-film strain-gauges are sputter-deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single-crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Cr thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097~1.21 $mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Feasibility Study of Embedded FBG Sensors for the Smart Monitoring of High Pressure Composite Vessel (복합재 고압용기의 스마트 모니터링을 위한 FBG 센서의 삽입 적용성에 관한 연구)

  • Park, Sang-Wuk;Park, Sang-Oh;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.33-36
    • /
    • 2005
  • In this research, for the smart health monitoring of the hydrogen storage high pressure composite vessel, the feasibility study of an embedded fiber Bragg grating(FBG) sensor is carried out. To verify strain measurement in various temperature environment which is needed for the hydrogen pressure vessel, tensile test of a composite specimen with both an embedded FBG sensor and a strain gauge is made in low temperature. Before we try a real-size hydrogen storage pressure vessel, a small & cheap composite pressure vessel having the same structure is fabricated with embedded FBG sensors and tested. In the case of an aluminum liner inside the vessel, survivability of FBG sensors at the interface is lower than the other areas.

  • PDF