• Title/Summary/Keyword: High temperature phase

Search Result 2,699, Processing Time 0.034 seconds

Influence of Ca Reduction Process on the Properties of Nanocrystalline Nd-Fe-B Powders Prepared by a Thermochemical Process (열화학공정으로 제조된 나노결정형 Nd-Fe-B 분말의 특성에 미치는 Ca환원 공정의 영향)

  • Lee, Dae-Hoon;Jang, Tae-Suk;Yoo, J.-H.;Choi, C.-J.;Kim, B.-K.;Park, Byeong-Yeon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • Nanocrystalline Nd-Fe-B powder was synthesized by a new thermochemical process that combined with past reduction-diffusion process and spray-dry process. In this process, Ca reduction process is vary important due to formation of hard magnetic$Nd_{2}Fe_{14}B$ phase from various oxides by Ca powder. Therefore, the final products are essentially affected a shape, size, and composition etc. of the Ca reduced powders. Ca reduction was performed to way that raw powders just mixed with Ca powder in proper ratio unlike to compress into compact. The powders after mixture-type Ca reduction mainly composited with $Nd_{2}Fe_{14}B$ phase even relativily low reaction temperature ($800^{\circ}C$) and all particle size of powder were distributed less than 1 ${\mu}m$ except for powder after Ca oxides as magnetic properties of powders after cake-type Ca reduction, with the consequence that high magnetic properties has been expected. The magnetic properties of powders prepared by mixture-type Ca ruduction, with the conseqence that high magnatic properties has been expected. The magnetic properties of powders prepared by mixture-type Ca reduction process showed $_iH_c$ = 5.9 kOe, $B_r$ = 5.5 kG, (BH)max = $Nd_{2}Fe_{14}B{\to}Nd_{2}Fe_{17}B$ decomposition by violent exothermic reaction during washing.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

Characteristic Changes of Swine Manure by Air Suction Composting System (돈분 퇴비화 시 공기 흡입 시스템에 따른 퇴비화 특성 변화)

  • Lee, Dong-jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Cho, Won-Mo;Ravindran, B.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.63-74
    • /
    • 2016
  • The objective of this study was to investigate the variations of physico-chemical properties during the swine manure composting, sawdust as the bulking agent was composted at different points (Top layer, Side of middle layer, Bottom layer). Air suction system with constant bottom aeration in bench scale reactors (30 L). The highest temperature was reached in the range of $58^{\circ}C$ to $62^{\circ}C$ on $3^{rd}$ day and this thermophilic phase (> $50^{\circ}C$) was continued for 3 days in all the treatment mixtures. However, the temperature was gradually decreased to room temperature at the end of 60 day composting process. Except control, the discharged ammonia ($NH_3$) was a maximum in the treatment order of Top layer>Bottom layer>Side of middle layer as 500 ppm, 162 ppm and 120 ppm, respectively, on the $4^{th}$ day and showing that Top layer point Air suction produce much more ammonia content than the other point. During the composting process, the total Kjeldahl nitrogen (TKN) was gradually increased due to the mass loss in the composting mixtures. At the same time, C/N ratio was decreased to Top layer, 13; Side of middle layer, 12 and Bottom layer, 13 at Air suction points. The significant reduction of C/N ratio in all different air suction system when manure was matured. The $NH_4-N$ to $NO_3-N$ ratio was recorded as 10.52 at the initial stage of the compost mixtures and reduced to 0.97 (Top layer), 0.70 (Side of middle layer), 3.2 (Bottom layer) because of manure decomposition. The overall results revealed that Top layer and Side of middle layer Air suction is a suitable option when compared other point for high quality composts.

Study on Iron-making and Manufacturing Technology of Iron Swords with Ring Pommel Excavated in Ipbuk-dong, Suwon (수원 입북동 출토 철제환두도의 제철과 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.579-588
    • /
    • 2016
  • This study analyzed nonmetallic inclusions in iron swords with a ring pommel excavated in the Ipbuk-dong, Suwon. Scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS) was used to estimate the iron-making temperature, and we compared the oxide with $SiO_2$ to investigate the heat-treatment technology in the production of iron swords with a ring pommel by investigating the artificial insertion of a slag former and the metallurgical structure. From the wustite observed in most of the specimens, it is judged that these swords were produced by heating and forging iron smelted at a low temperature using the solid reduction method. In addition, judging from the partial presence of $P_2O_5$, it is assumed that they were smelted directly with natural ore, not calcined. From the ratios of $CaO/SiO_2$ and $TiO_2/SiO_2$, it is judged that the raw material for iron-making was iron ore and that a calcareous slag former was not artificially inserted. The structure of the blade part on the front end was pure iron. From the high carbon content of the blade part on the ring pommel and the formation of a martensitic structure and pearlite colony, it is judged that they were tempered after carburizing and that the back, handle part, and ring pommel were unintentionally carburized. Judging from the structure of these specimens, it was noted that they were produced by applying artificial partial heat-treatment technology. This study attempted to present a more scientific analysis by using the method of interpretation through component analysis of nonmetallic inclusions appearing in one relic by the ratio of the oxide divided by $SiO_2$. It is judged that reinterpreting the arguments by the results of the existing analysis and research in this way can obtain different interpretations.

Synthesis and Electrochemical Properties of (La0.6Sr0.4)(Co0.2Fe0.8)O3 cathode for SOFC on pH Control Using Modified Oxalate Method (Modified Oxalate Method 의해 합성한 SOFC용(La0.6Sr0.4)(Co0.2Fe0.8)O3 Cathode의 pH 변화에 따른 특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Kim, Sei-Ki;Park, Sang-Sun;Lee, Kyung-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.288-294
    • /
    • 2007
  • The LSCF cathode far Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolytes and different pH. The LSCF powders employed La, Sr, Co and Fe oxides, oxalic acid, ethanol and $NH_4OH$ solution were synthesized with pH controlled as 2, 6, 7, 8, 9 and 10 at $80^{\circ}C$ Single crystalline phase was obtained from pH $2{\sim}9$. on the other hand, $La_2O_3$ appeared from pH 10. Very fine powder with particle size of 50 nm was obtained at calcination temperature of $800^{\circ}C$ for 4 hours. LSCF cathode synthesized at pH 7 showed the highest electric conductivity in the temperature range of $600^{\circ}C$ to $900^{\circ}C$ its value was 950 S/cm at $900^{\circ}C$ Under same synthesis conditions, polarization resistance of each LSCF cathode was changed with different calcination temperatures. As-prepared powder presented 2.52, 1.54 and $2.58\;{\Omega}$ at $600^{\circ}C$ with ScSZ, 8Y-YSZ and GDC as its electrolyte respectively after calcination at $800^{\circ}C$ for 4 hours.

Evaluation of the Potential of Nitrogen Plasma to Cosmetics (질소 플라즈마의 화장품 가능성 평가)

  • Lee, So Min;Jung, So Young;Brito, Sofia;Heo, Hyojin;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Lee, Mi-Gi;Bin, Bum-Ho;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • Plasma refers to an ionized gas that is often referred to as "the fourth phase of matter", following solid, liquid, and gas. Plasma has traditionally been utilized for industrial applications such as welding and neon signs, but its promise in biomedical fields such as cancer treatment and dermatology has lately been recognized. Indeed, due to its beneficial effects in promoting collagen production, improving skin tone, and eliminating harmful bacteria in the skin, plasma treatment constitutes an important target for dermatological research. In this study, a plasma device for cosmetic manufacturing based on nitrogen, the main component of the atmosphere, was designed and assembled. Moreover, nitric oxide (NO) was selected since is easier to follow and evaluate than other nitrogen plasma active species, and its contents were measured to perform a quantitative and qualitative evaluation of plasma. First, an injection method, using different proximities labeled "sinking" and "non sinking" treatments, was performed to test the most efficient plasma treatment method. As a result, it was observed that the formulation obtained by a non sinking treatment was more effective. Furthermore, toner and ampoule were selected as cosmetics formulations, and the characteristics of the formulation and changes in the injected plasma state were observed. In both formulations, the successful injection of NO plasma was 2 times higher in toner formulation than ampoule formulation, and it gradually decreased with time, having dissipated after a week. It was confirmed that the nitrogen plasma used did not affect the stability of the toner and ampoule formulations at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃ and 50 ℃) conditions. The results of this study demonstrate the potential of plasma cosmetics and highlight the importance of securing the stability of the injected plasma.

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

Diamond Films on Electroless Ni-P Plated WC-Co Substrates (무전해 Ni-P도금층/WC-Co기판 상에 다이아몬드 막 제조)

  • Kim, Jin-Oh;Kim, Hern;Park, Jeong-Il;Park, Kwang-Ja
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.742-748
    • /
    • 1997
  • Diamond films which have high hardness and thermal conductivity can be used to improve the performance of WC-Co as a cutting tool material. However, it is difficult to get such coatings of good uniformity and adhesiveness due to the surface characteristics of WC-Co. To get better coatings, some techniques, such as the surface treatment of substrate or the formation of interlayer between substrate and diamond film, have been tried. In the present work, the nickel interlayer is formed onto WC-Co by electroless Ni-P plating, which is introduced as a new method, and then diamond film is deposited on the interlayer. Formation and uniformity of three layers, i.e., substrate, electroless plate, and diamond film, and the adhesiveness of interlayers were studied. To investigate the effects of pretreatment on electroless plating, two different methods such as acid treatment and diamond powder treatment were used. The effects of heat treatment of the electroless plated surface on adhesiveness between the substrate and the interlayer were examined. It was found that as the temperature increases, the Ni crystals grow and then result in improved adhesiveness. Diamond film coatings of pure diamond phase were obtained at $800^{\circ}C$. It is concluded that the heat treated electroless Ni-P plating can be effectively used as a interlayer between WC-Co substrate and diamond film.

  • PDF

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Crystal growth of gypsum by neutralization reaction of waste sulphuric acid using sludge and dust in Pohang Iron & Steel plant (포항제철(주) 슬러지와 Dust를 이용한 폐황산 중화반응에서 얻어진 석고의 결정성장연구)

  • Ji whan Ahn;Ka yeon Kim;Hwan Kim;Sang bop Lee;Eu dug Hwang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.673-680
    • /
    • 1997
  • NaOH, $Na_2CO_3, CaO, Ca(OH)_2$ and $CaCO_3$ are widely used counteractives for neoutralizing the waste sulphuric acid produced during the metal surface treatment process and/or the metal refining process. To reduce the tremendous expenses for the neutralization treatment of the waste sulphuric acid, the sludge from calcination plant and the stainless refining dust in POSCO (Pohang Iron & Steel co. Ltd.) was utilized. For the sludge, it will be effective to use calcined and then hydrated sludge in strong acid region (pH<2) and to use the sludge itself in weak acid region (pH>2), The gypsum, the by-product of this treatment, was tested to fit the industrial standard of gypsum, so it is expected that it will solve the lack of gypsum supply. For the stainless refining dust, the phase and the morphology of produced gypsum from waste suiphuric acid neutralization was compared with those from pure sulphuric acid. Because of high reactivity and reaction temperature, $CaSO_4$ non-hydrate was obtained in pure sulphuric acid. But $CaSO_4$ dihydrate was obtained in waste sulphuric acid. It is also judged to be a good material for a counteractive of the waste sulphuric acid.

  • PDF