• 제목/요약/키워드: High temperature phase

Search Result 2,687, Processing Time 0.028 seconds

The Effect of Calcium on Microstructure of AZ61 Magnesium Alloy during Annealing Heat Treatment (AZ61 마그네슘 합금의 어닐링 중 Ca의 첨가에 따른미세조직 변화에 미치는 영향)

  • Kim, Kibeom;Jeon, Joonho;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2021
  • Due to high specific strength and low density, AZ series magnesium alloys have been receiving high interest as a lightweight material. However, their industrial application is limited due to the phenomenon that the strength decreases at elevated temperature by the occurrence of softening effect because of the Mg17Al12 phase decomposition. To solve this problem, many research were conducted to increase the high-temperature strength by forming a thermal stable second-phase component by adding new elements to the AZ magnesium. Especially, adding Ca to AZ magnesium has been reported that Ca forms the new second-phase. However, studies about the analysis of decomposition or precipitation temperature, formation composition, and components to understand the formation behavior of these precipitated phases are still insufficient. Therefore, the effect of Ca addition to AZ61 on the phase change and microstructure of the alloy during annealing was investigated. As a result of analysis of the initial and heat-treated specimen, AZ61 formed α-Mg matrix and precipitated phase of Mg17Al12, and AZX611 formed one more type of precipitated phase, Al2Ca. Also, Al2Ca was thermal stable at high temperatures. And after annealing, the laves phase was decomposed to under 10 ㎛ size and distributed in matrix.

Microwave Properties of Tunable Phase Shifter Using High Temperature Superconducting Thin Film (고온초전도 박막을 이용한 튜너블 이상기의 마이크로파 특성)

  • Kwak Min Hwan;Kim Young Tae;Moon Seong Eon;Ryu Han Cheol;Lee Su Jae;Kang Kwang Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • High temperature superconductor, $\YBa_2Cu_3O_{7-x}$ (YBCO) and ferroelectric, $\Ba_{0.1}Sr_{0.9}TiO_{3}$ (BST) multilayer thin films were deposited using on MgO(100) substrates pulsed laser deposition. The thin films exhibited only (001) peaks of YBCO and 1357 The HTS thin films demonstrated excellent zero resistance temperature of 92.5 K. We designed and fabricated HTS ferroelectric phase shifter using high frequency system simulator and standard photolithography method, respectively The HTS phase shifter shows a low insertion loss (2.97 dB) and large phase change ($\162^{circ}$) with 40 V do bias at 10 GHz. The HTS phase shifter shows 54 of figure of merit. These results can be applicable to phased anay antenna system for satellite communication services.

Thermal Stability of Superconductor NdBCO Sintered at Various Oxygen Partial Pressures (다양한 산소분압에서 소결한 NdBCO 초전도체의 열적 안정성)

  • Chung, J.K.;Kim, W.J.;Park, S.C.;Kang, S.G.;Lim, Y.J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.133-138
    • /
    • 2009
  • The $Nd_{1+x}Ba_{2-x}Cu_3O_{7-{\delta}}$(Nd123) superconductor exhibits high performance in high magnetic field and high temperature. We have studied phase stability for Nd123 under reduced oxygen partial pressure and various heat-treatment conditions. The main phase is Nd123 and some samples contain small amounts of Nd422 depending on the temperature and oxygen partial pressure. The decomposition temperature decreases with decreasing oxygen partial pressure from $1052^{\circ}C(P(O_2)$=150 Torr) to about $845^{\circ}C(P(O_2)$=0.1 Torr). The liquidus line was steeper temperature with decreasing oxygen partial pressure. In same condition of oxygen partial pressure, the region of stable Nd123 phase was formed at slightly higher temperature than the region of stable YBCO phase.

  • PDF

A Study on the High Temperature Deformation and the Cavity Initiation of Gamma TiAl Alloy ($\gamma$-TiAl 합금의 고온변형 및 Cavity 형성 연구)

  • Kim J. H.;Ha T. K.;Chang Y. W.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.172-175
    • /
    • 2001
  • The high temperature deformation behavior of two-phase gamma TiAl alloy has been investigated with the variation of temperature and ${\gamma}/{\alpha}_2$ volume fraction. For this purpose, a series of load relaxation tests and tensile tests have been conducted at temperature ranging from 800 to $1050^{\circ}C$. In the early stage of the deformation as in the load relaxation test experimental flow curves of the fine-grained TiAl alloy are well fitted with the combined curves of two processes (grain matrix deformation and dislocation climb) in the inelastic deformation theory. The evidence of grain boundary sliding has not been observed at this stage. However, when the amount of deformation is large (${\epsilon}{\approx}$ 0.8), flow curves significantly changes its shape indicating that grain boundary sliding also operates at this stage, which has been attributed to the occurrence of dynamic recrystallization during the deformation. With the increase in the volume fraction of ${\alpha}_2$-phase, the flow stress for grain matrix deformation increases since ${\alpha}_2$-Phase is considered as hard phase acting as barrier for dislocation movement. It is considered that cavity initiation is more probable to occur at ${\alpha}_2/{\gamma}$ interface rather than at ${\gamma}/{\gamma}$ interface.

  • PDF

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (I) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (I) -연료/공기 혼합정도가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1184-1192
    • /
    • 2004
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane gas. The objective of this study was to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs gave an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature gave an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

Phase-resolved CARS Temperature Measurements in a Lean Premixed Gas Turbine Combustor;Effect of fuel/air mixing on phase-resolved gas temperature (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정(1);연료/공기 혼합정도가 위상별 온도에 미치는 영향)

  • Moon, Gun-Feel;Lee, Jong-Ho;Park, Chul-Woong;Hahn, Jae-Won;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.97-102
    • /
    • 2003
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on natural gas. The objective of this study is to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs give an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature give an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

  • PDF

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (II) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (II)-당량비가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1193-1201
    • /
    • 2004
  • The effect of equivalence ratio and fuel/air mixing quality on the phase-resolved gas temperatures at different phases of the oscillating pressure cycle was experimentally investigated. An atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane with heat release rate of 1.59kW was used. Temperature measurements were made using coherent anti-Stokes Raman spectroscopy (CARS) at several spatial locations fur typical unstable combustion conditions. Analysis was conducted using parameters such as phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs). Also the probability on the occurrence of high temperature (over 1900K) was investigated to get the information on the perturbation of equivalence ratio and NOx emission characteristics. It was shown that most of temperature histograms exhibit Gaussian profile which has short breadth of temperature fluctuation at equivalence ratio of 0.6, while beta profile was predominant for the cases of other equivalence ratios (${\Phi}$=0.55, 0.50). It was also shown that phase-resolved averaged temperature oscillated in phase with pressure cycle, while normalized standard deviations which represent temporal turbulent intensity of temperature showed nearly constant value around 0.1. The characteristics on the occurrence of high temperature also displayed periodic wave form which was very similar to the pressure signal. And the amplitude of this profile went larger as the fuel/air mixing quality became poorer. These also provided additional information on the perturbation of equivalence ratio at flame as well as NOx emission characteristics.

The Effect of Various Processing Conditions on Temperature Distribution in Steam-air Retort (스팀-에어 레토르트의 온도분포에 미치는 공정 변수 영향)

  • Lee, Sun-Young;Shin, Hae-Hun;In, Ye-Won;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • Temperature distribution studies were performed in steam-air retort to investigate the influence of various processing conditions (come-up time, sterilization temperature, and internal pressure throughout the steam-air retort). Retort temperature data were analyzed for temperature deviations during holding phase, maximum temperature difference between test locations at the beginning and after 1, 3, and 5 min of the holding phase, and box-and-whiskers plots for each location during the holding phase. The results showed that high sterilization temperature led to a more uniform temperature distribution than low sterilization temperature (pasteurization). In pasteurization condition, the temperature stability was slightly increased by increasing pressure during the holding phase. On the other hand, the temperature stability was slightly decreased in high sterilization temperature condition. Programming of the come-up phase did not affect the temperature uniformity. In addition, the slowest cold spot was found at the bottom floor during the holding phase in all conditions. This study determined that the temperature distribution is affected by retort processing conditions, but the steam-air retort needs more validation tests for temperature stability.

Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger (자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발)

  • Yutaro Oki;Yoshinori Sumi;Yoshihiko Koyanagi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.

Microstructure and Phase Stability of $\beta$-Dicalcium Silicate ($\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화)

  • 박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF