• Title/Summary/Keyword: High temperature electrochemistry

Search Result 30, Processing Time 0.026 seconds

Application of Ionic Liquids Based on 1-Ethyl-3-Methylimidazolium Cation and Fluoroanions to Double-Layer Capacitors

  • Ue, Makoto;Takeda, Masayuki
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.192-196
    • /
    • 2002
  • Ionic liquids based on l-ethyl-3-methylimidazolium cation $(EMI^+)$ and inorganic or organic anions containing fluorine atoms were applied to electrolyte materials for double-layer capacitors. The double-layer capacitors composed of a pair of activated carbon electrodes and an ionic liquid selected from $EMIBF_4,\; EMINbF_6,\;EMITaF_6,\;EMICF_3SO_3,\;EMI(CF_3SO_2)_2N,\;and\;EMI(C_2F_5SO_2)_2N$ showed inferior low-temperature characteristics to those of a conventional nonaqueous electrolyte based on propylene carbonate (PC) solvent. On the other hand, the capacitor using $EMIF{\cdot}2.3HF$ showed excellent low-temperature characteristics due to its high conductivity at low temperatures, however, it had a lower working voltage $(\~2V)$ than the conventional nonaqueous counterpart $(\~3V)$.

Electrochemical Technologies : Water Treatment (전기화학공학 기술 : 수처리 공정)

  • Lee, Jaeyoung;Lee, Jae Kwang;Uhm, Sunghyun;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.235-242
    • /
    • 2011
  • This perspective describes recent advances made in the development of various electrochemical technologies to treat waste water containing organic pollutants, reducible/oxidizable and non-reducible/non-oxidizable anions and cations using redox reactions on the solid surface as well as at the interface between solid electrode and liquid electrolyte. Some of representative multiplexing and hybrid electrochemical treatment technologies are discussed, which have great advantages of high efficiency, stability and cost-effective instrumentation without the need of considering non-specific conditions such as high-temperature and high-pressure; however, choices and usages of electrode materials are absolutely critical issues.

Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries

  • Seong, Min Ji;Manivannan, Shanmugam;Kim, Kyuwon;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.453-457
    • /
    • 2021
  • Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.

Hydrolysis of Penicillin G and Carbenicillin in Pure Water - As Studied by HPLC/ESI-MS

  • Kolek, Marta;Franski, Rafal;Franska, Magdalena
    • Mass Spectrometry Letters
    • /
    • v.10 no.4
    • /
    • pp.108-111
    • /
    • 2019
  • The hydrolysis of penicillin G, carbenicillin and ampicillin in pure water at room temperature was studied by high pressure liquid chromatography electrospray ionization mass spectrometry. Hydrolysis of ampicillin did not occur under these conditions; however, penicillin G and carbenicillin were completely hydrolyzed after seven days. A short interpretation of this difference is proposed. The mass spectrometric behaviour, namely ESI response and fragmentation pathway, of hydrolyzed penicillin G and hydrolyzed carbenicillin have been also discussed.

Factors Affecting Nucleation and Growth of Chromium Electrodeposited from Cr3+ Electrolytes Based on Deep Eutectic Solvents

  • El-Hallag, Ibrahim S.;Moharram, Youssef I.;Darweesh, Mona A.;Tartour, Ahmed R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.291-309
    • /
    • 2020
  • Chromium was electrodeposited from deep eutectic solvents-based Cr3+ electrolytes on HB-pencil graphite electrode. Factors influencing the electrochemical behavior and the processes of Cr nucleation and growth were explored using cyclic voltammetry and chronoamperometry techniques, respectively. Cr3+ reduction was found to occur through an irreversible diffusion-controlled step followed by another irreversible one of impure diffusional behaviour. The reduction behavior was found to be greatly affected by Cr3+ concentration, temperature, and type of hydrogen bond donor used in deep eutectic solvents (DESs) preparation. A more comprehensive model was suggested and successfully applied to extract a consistent data relevant to Cr nucleation kinetics from the experimental current density transients. The potential, the temperature, and the hydrogen bond donor type were estimated to be critical factors controlling Cr nucleation. The nucleation and growth processes of Cr from either choline chloride/ethylene glycol (EG-DES) or choline chloride/urea (U-DES) deep eutectic solvents were evaluated at 70℃ to be three-dimensional (3D) instantaneous and diffusion-controlled, respectively. However, the kinetics of Cr nucleation from EG-DES was found to be faster than that from U-DES. Cr nucleation was tending to be instantaneous at higher temperature, potential, and Cr3+ concentration. Cr nuclei electrodeposited from EG-DES were characterized at different conditions using scanning electron microscope (SEM). SEM images show that high number density of fine spherical nuclei of almost same sizes was nearly obtained at higher temperature and more negative potential. Energy dispersive spectroscopy (EDS) analysis confirms that Cr deposits were obtained.

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn (Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성)

  • Lee Jae Won;Lee Back-Hee;Lee Kyu Hwan;Kim Young Do
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

Molecular dynamics study of ionic diffusion and the FLiNaK salt melt structure

  • A.Y. Galashev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1324-1331
    • /
    • 2023
  • In the present work, we carried out a molecular dynamics study of the kinetic properties of the FLiNaK molten salt, as well as a detailed study of the structure of this salt melt. The high value of the self-diffusion coefficient of fluorine ions is due to the large number of Coulomb repulsions between the most numerous negative ions. The calculated values of shear viscosity are in good agreement with the experimental data, as well as with the reference data obtained on the basis of finding the most reliable data. The total and partial functions of the radial distribution are calculated. According to the statistical analysis, fluorine ions have the greatest numerical diversity in the environment of similar ions, and sodium ions with the lowest representation in FLiNaK, have the least such diversity. For the subsystem of fluorine ions, the rotational symmetry of the fifth order is the most pronounced. Some of the fluorine ions form linear chains consisting of three atoms, which are not formed for positive ions. The results of the work give an understanding of the behavior molten FLiNaK under operating conditions in a molten salt reactor and will find application in future studies of this molten salt.

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan;Choi, Young-Woo;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Han-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

Electrochemical Properties on High Temperature Operating Battery by Electrolyte and Salts in Electrodes (고온 작동형 전지의 전해질 및 전극내 첨가염 변화에 따른 전기화학적 특성 연구)

  • Choi, Yu-Song;Ha, Sang-Hyun;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.740-746
    • /
    • 2011
  • Thermally activated batteries have good stability, reliability and long shelf life. Due to these characteristics and operational mechanism, thermal batteries are usually applied to military power sources. Especially, Li/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as electrolytes. The electrochemistry of thermal batteries have been researched for long time, however, electrochemical study using impedance spectroscopy was not published so much. Through this research, microscopic electrochemical research was investigated with electrochemical impedance spectroscopy(E.I.S). Electrolyte effects on Li/$FeS_2$ thermal battery was researched changing electrolytes, LiCl-KCl and LiBr-LiCl-LiF. Additionally, the salts, which are added to electrolytes, effects on thermal battery were researched. It is expected that the impedance spectroscopy analysis is applicable to not only thermal battery electrochemical study effectively, but also, thermal battery developments.