• 제목/요약/키워드: High temperature days

Search Result 1,680, Processing Time 0.028 seconds

Precipitation and Cloud Cover on High Ozone Days (고농도 오존일의 강우와 운량)

  • 김영성;김영진;윤순창
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.747-755
    • /
    • 1999
  • Effects of precipitation and cloud cover on high ozone days are examined by investigating the precipitation and average cloud cover before the ozone peak time within a day. High ozone days above 100 ppb in the Greater Seoul Area(GSA) for the ozone season from May to September are chosen for the analyses in terms of the surface meteorological data during 1990~1997. The result shows that the effect of precipitation on the rise of ozone concentration is definitely negative so that ozone concentration could not rise above 100ppb immediately after precipitation. But, the effect of cloud cover is associated with the variations of other meteorological parameters. The number of high ozone days with "zero" cloud cover is rather less than that with cloud cover of 1 to 4 since temperature is usually lower in "zero" cloud cover days. Furthermore, ozone concentration can rise above 100ppb even with full cloud cover when the wind is weak and the temperature is high.temperature is high.

  • PDF

The Spatial Distribution and Change of Frequency of the Yellow Sand Days in Korea (한국의 황사 발생 빈도 분포와 변화 분석)

  • Kim, Sunyoung;Lee, Seungho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.3
    • /
    • pp.207-215
    • /
    • 2006
  • The purpose of this paper is to analyze the spatial distribution and change of the frequency of Yellow Sand days and to examine their relationship with atmospheric circular characteristics at the surroundings of the Korean peninsula. Yellow Sand days data are used by intensity, Siberian High Index and monthly mean temperature of the Northern Hemisphere. In the Middle-western region, the occurrence frequency of Yellow Sand days was higher during the study period (1973-2004). Also, the occurrence frequency of Yellow Sand days increased to latter half 16 years compared with the first half 16 years, and be clearer in Middlewest regions. Yellow Sand days frequency increased, and the trend was distinct in the Jungbu region during the study period. Increasing trend of Yellow Sand days frequency was significant for the recent 22 years. Yellow Sand days had a negative relationship with Siberian High Index in February and March. Therefore, Siberian High Index became weaker in the spring, and possibility for the occurrence of Yellow Sand days was generating larger. Yellow Sand days had a positive relationship in monthly mean temperature of the Northern Hemisphere. Especially, the case of the strong Yellow Sand days is significant. Recently, global warming might be affecting the occurrence of strong Yellow Sand days.

Assessment on Damage Risk of Corn for High Temperature at Reproductive Stage in Summer Season Based on Climate Scenario RCP 8.5 and 4.5

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to assess risk of high temperature damages about corn during reproduction stages in the future, we carried out analysis of climate change scenarios RCP (Representative Concentration Pathway) 4.5 and RCP8.5 distributed by KMA (Korea Meteorological Administration) in 2012. We established two indexes such as average of annual risk days of high temperature damage which express frequency and strengthen index of high temperature damage. As results of producing maps for 157 cities and counties about average of annual risk days of high temperature damage during total periods of scenarios, the risk of high temperature in RCP8.5 was evaluated to increase at all over nation except inland area of Gangwon province, while RCP4.5 showed similar to present, or little higher. The maps of annual risk days of high temperature damage with 10 years interval in RCP8.5 prospected that the risk for damaging corn growth would increase rapidly from 2030's. The largest risk of high temperature damage in the future of RCP8.5 was analyzed at Changnyeong county located east-south inland area in Kyeongnam province, while the smallest of risk counties were Pyeongchang, Taebaek, Inje, and Jeongseon. The prospect at 12 counties which is large to produce corn at present and contains large plains have been showed that there will be only a little increase of risk of high temperature at Goesan, Yangpyeong, Hongcheon, Seosan, and Mooju until 2060's. But considering strengthen index of high temperature damage, most regions analyzed would be prospected to increase rapidly after 2030's. To cope with high temperature damage of corn in the future, we should develop various practical technologies including breeding adapted varieties and controlling cultivation periods.

Effect of High Temperature on Leaf Physiological Changes as Chlorophyll composition and Photosynthesis Rate of Rice (벼 등숙기 고온이 잎의 엽록소구성과 광합성 및 생리적 변화에 미치는 영향)

  • Shon, Jiyoung;Kim, Junhwan;Lee, Chung-Kuen;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.266-272
    • /
    • 2015
  • High temperature impairs rice grain yield and quality. To understand the effect of high temperature on leaf physiological activity and grain filling, two cultivars of rice that Dongan and Ilpum were exposed to high temperature during ripening stage. Grain filling rate, perfect grain ratio and grain weight of high temperature ($27^{\circ}C{\pm}4^{\circ}C$) treated both rice cultivars were decreased than those of control temperature ($22^{\circ}C{\pm}4^{\circ}C$) treated. The reduction rates of grain filling ratio, perfect grain ratio and grain weight of high temperature treated to control treated rice were higher in Ilpum than Dongan. Chlorophyll contents of rice leaves under high temperature at early ripening stage were higher than those of control temperature, but those were slowly decreased with no difference between temperature treatment since at mid ripening stage. Although chlorophyll a/b ratio under high temperature was decreased from heading to 15 days after heading, that was gradually increased since 15 days after heading. Protein concentrations of rice leaves for ripening stage was a similar pattern with chlorophyll changes. The rate of photosynthesis at 14 days after heading under high temperature was higher than those of control temperature, but there was no difference at those of 7 and 34 days after heading between two temperature treatment. Free sugars under high temperature treated leaves were lower than control temperature. Consequently, these results exhibit that high temperature accelerate leaf physiological activity as chlorophyll synthesis and photosynthesis rate unlike the deterioration of grain filling.

Effect of Fermentation Temperature on Quality of Doenjang (숙성온도가 된장의 품질에 미치는 영향)

  • Kim, Moon-Seok;Kim, Eun-Mi;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • There were four types of Doenjang fermentation as following conditions for investigation ; 1) low temperature fermentation at $13^{\circ}C$ for 180 days, 2) low temperature at $13^{\circ}C$ for 7 days to room temperature at $30^{\circ}C$ for 10 days, to low temperature at $13^{\circ}C$ for 163 days, and for 173 days, 3) low temperature at $13^{\circ}C$ 7 days to room temperature at $30^{\circ}C$, 4) room temperature at $30^{\circ}C$ for 180 days. There were no changes of moisture, NaCl and total nitrogen content during fermentation period of four types conditions, but pH and amino type nitrogen decreased in room temperature at $30^{\circ}C$ for 180 days. It required 3 times more fermentation period until same quantity of the amino type nitrogen. The low temperature fermentation sample was lower than room temperature fermentation sample in pH and amino type nitrogen. The yeast decreased in low temperature fermentation sample taken 15 to 30 days longer than room temperature sample. The yeast is increased up to 30 days, and decreased little by little. After 60 days, it remained a few without effectiveness on the Doenjang quality. The low temperature fermentation sample showed brighter than room temperature fermentation sample. Different fermentation condition affected Doenjnag quality, especially, low temperature fermentation sample showed bright color in Doenjnag. So low temperature fermentation must be expected as good method for getting high quality Doenjnag.

  • PDF

The Effect of Light and Darkness on Acclimatization of Laying Hens

  • Izzeldin, B.;Kassim, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.694-697
    • /
    • 2000
  • Laying hens kept in different light and dark periods of the day at high ambient temperature of maximum $35^{\circ}C$ were challenged to $38.5{\pm}0.5^{\circ}C$ acute heat 3 hours daily for 7 consecutive days. They were found to have a significant (p<0.01) acclimatization response (rectal temperature) to heat stress during the dark period compared to those exposed to the same temperature during the light period. The blood pH was not significantly different. The partial pressure of carbon dioxide ($PCO_2$) was significantly high (p<0.01) except in day 4. Similarly the blood bicarbonate ($HCO_3$) concentration was significantly high (p<0.05) except day three and day four. Acute heat exposure in the first day increased the body temperature in both groups (Light and Dark) reaching $44^{\circ}C$, followed by gradual reduction in body temperature. The dark treated birds showed rapid reduction in body temperature ($42.88^{\circ}C$) and adaptation to high temperature during days 2-4 but that this was lost to some extent in days 6-8. However this was not obvious in the light treated birds. It is concluded that darkness reduce hyperthermia and enhance acclimatization responses during acute heat stress.

Hardwood Cutting with Callusing in the Mulberry(Morus bombycis Koidz.) II. Effect of Callusing Temperature on Root Formation and Growth (뽕나무 유합촉진 고조삽목에 관한 연구 II. 삽목온도가 발근생장에 미치는 영향)

  • Kim, Ho-Rak;Choe, Seung-Un;Im, Su-Ho
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.68-71
    • /
    • 1991
  • Mulberry cuttings from shoots of Shinkwangppong(Morus bombycis koidz.) had been callused in vermiculite separately at 15, 20, 25 and 30$^{\circ}C$ for 15 days before transplanting them in greenhouse to make clear the effect of temperature on root formation and growth is as follow. The buds of cuttings started sprouting in 4 and 6 days of callusing at 30 and 25$^{\circ}C$, respectively, reaching 100% budding in 10 and 15 days of callusing. Budding was delayed, however, at low temperature, showing 86% and 92% at 15 and 20$^{\circ}C$, respectively, in 15 days. Rooting from the cuttings was also accelerated at high temperature, showing 97-100% rooting at 25$^{\circ}C$ and 30$^{\circ}C$, in 15 days of callusing but no more than 93% at low temperature even in 35 days. Although high temperature increased root number and length after 15 days in callusing, no differences showed in the number and the weight at more than 20$^{\circ}C$ in 35 days of cuttings.

  • PDF

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

Strength Development of High-Strength Concrete in Structure

  • Msuda, Yochihiro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.31-45
    • /
    • 2000
  • Because of the high unit cement content in the concrete mix, major concrete temperature rises are observed in the initial stages of hardening in structural members with large cross-sections made of high-strength concrete. While this temperature rise in the initial stages of hardening contributes to the initial development of the concrete strength, it also causes thermal cracking and obstructs medium to long-term increases of the concrete strength. In the study reports below, investigations were made on the effects of the concrete temperature rise in the initial stages of hardening on the medium to long-term development of the strength of structural concrete between the ages of 28 and 91 days. In the study, comparisons were made, for example, between the compressive strength of a control specimen subjected to standard curing at 28 days and the compressive strength of core specimens taken from structural members, and observations were made on the methods of evaluating the concrete strength in structure, defined here as the compressive strength of core specimens at 91 days. The results obtained indicate that, when the maximum temperature of the concrete is the structure does not exceed $60^{\circ}C$, the concrete strength in structure at the age of long-term will generally be greater than the compressive strength of the standard-curing specimens at 28 days, allowing one to evaluate the strength of the structural concrete in terms of the compressive strength of the 28-days standard-curing specimens. When, on the other hand, the maximum temperature of the concrete in the structure exceeds $60^{\circ}C$, the strength in concrete structure may be smaller than the compressive strength of the 28-days standard-curing specimens, creating risks in the evaluation of the concrete strength in structure by latter.

  • PDF

Evaluation of Strength and Chloride Diffusion in Concrete with FA Considering Temperature Effect (FA를 혼입한 콘크리트의 온도 영향을 고려한 강도 및 염화물 확산성 평가)

  • Keun-Hyeok Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.62-69
    • /
    • 2023
  • For the nuclear power concrete plant structures in the UAE, it is necessary to consider the deterioration from high sulfate ions in the atmosphere and high chloride ions from the coast. In this study, two strength grade concrete mixture (40 MPa and 27 MPa) and two curing/diffusion temperatures (20 ℃ and 50 ℃) were considered for evaluating the temperature effects on diffusion and strength due to high average temperature above 38 ℃ a year in UAE. When the initial curing temperature was high, the compressive strength increased in high-temperature curing to 7 days, but the strength slightly increased in the 20 ℃ curing condition at 28 days. Regarding diffusion test, unlike the compressive test results, reduced chloride diffusion coefficients were evaluated both in 40 MPa and 27 MPa grade at 28 days. In the case of 91 days of curing, an increase in diffusivity due to high temperature and a decrease in diffusivity due to age effect occur simultaneously. Compared to the results of the curing and diffusion tests at 20 ℃ and 28 days, when the curing and diffusion tests were conducted at 50 ℃ in 91 days, the diffusion coefficients decreased to 76.2 % in 40 MPa grade and 85.4 % in 37 MPa grade with increasing curing period, respectively.