• Title/Summary/Keyword: High step-up converter

Search Result 189, Processing Time 0.024 seconds

A New High Efficient Bi-directional DC/DC Converter in the Dual Voltage System

  • Lee Su-Won;Lee Seong-Ryong;Jeon Chil-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.343-350
    • /
    • 2006
  • This paper introduces a new high efficient bi-directional, non-isolated DC/DC converter. Through variations of the topology of the conventional Cuk converter, an optimum bi-directional DC/DC converter is proposed. Voltage and current in the proposed DC/DC converter are continuous. Furthermore, the efficiency in both step-up and step-down mode is improved over that of the conventional bi-directional converter. To prove the validation for the proposed converter, simulations and experiments are executed with a 300W bi-directional converter.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Three-Phase ZVS DC-DC Converter with Low Transformer Turn Ratio for High Step-up and High Power Applications (낮은 변압기 턴비를 갖는 고승압.대전력용 3상 ZVS DC-DC컨버터)

  • Kim, Joon-Geun;Park, Chan-Soo;Choi, Se-Wan;Park, Ga-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.242-249
    • /
    • 2011
  • The proposed converter has easy device selection for high step-up and high power applications since boost half bridge and voltage doubler cells are connected, respectively, in parallel and series in order to increase output power and voltage. Especially, optimized design of high frequency transformers is possible owing to reduced turn ratio and eliminated dc offset, and distributed power through three cores is beneficial to low profile and thermal distribution. The proposed converter does not necessitate start-up circuit and additional clamp circuit due to the use of whole duty range between 0 and 1 and is suitable for applications with wide input voltage range. Also, high efficiency can be achieved since ZVS turn on of switches are achieved in wide duty cycle range and ZCS turn on and off of diodes are achieved. The proposed converter was validated through 5 kW prototype.

Novel Non-Isolated DC-DC Converter Topology with High Step-Up Voltage Gain and Low Voltage Stress Characteristics Using Single Switch and Voltage Multipliers (단일 스위치와 전압 체배 회로를 이용하는 고변압비와 낮은 전압 스트레스를 가진 새로운 비절연형 DC-DC 컨버터 토폴로지)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.83-85
    • /
    • 2019
  • The use of high voltage gain converters is essential for the distributed power generation systems with renewable energy sources such as the fuel cells and solar cells due to their low voltage characteristics. In this paper, a high voltage gain topology combining cascode Inverting Buck-Boost converter and voltage multiplier structure is introduced. In proposed converter, the input voltage is connected in series at the output, the portion of input power is directly delivered to the load which results in continuous input current. In addition, the voltage multiplier stage stacked in proper manner is not only enhance high step-up voltage gain ratio but also significantly reduce the voltage stress across all semiconductor devices and capacitors. As a result, the high current-low voltage switches can be employed for higher efficiency and lower cost. In order to show the feasibility of the proposed topology, the operation principle is presented and the steady-state characteristic is analyzed in detail. A 380W-40/380V prototype converter was built to validate the effectiveness of proposed converter.

  • PDF

Improved Modeling and Control of Boost-Flyback Converter With High Step-Up Voltage Ratio (높은 승압비를 갖는 부스트-플라이백 컨버터의 개선된 모델링 방법)

  • Seo, Sang-Uk;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes the aggregated modeling and control of integated boost-flyback converter (IBFC) for understanding of dynamics characteristic and designing of relevant controller. The basic concept of the aggregated modeling is to substitute the boost or the flyback converter with an equivalent current source. Since each converter with equivalent current source corresponds to the basic boost and flyback converters, the overall mathematical process is significantly simplified for the modeling. Afterwards each result is combined to construct the complete model of the IBFC, and the relevant controller is designed through the achieved small-signal model. Simulation and experimental results show excellent agreement with the theoretical expectations.

A Novel Non-Isolated DC-DC Converter using Single Switch and Voltage Multipliers with High Step-Up Voltage Gain and Low Voltage Stress Characteristics (고전압비와 낮은 전압 스트레스를 가진 단일 스위치와 전압 체배 회로를 이용한 새로운 비절연형 DC-DC 컨버터)

  • Tuan, Tran Manh;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.157-161
    • /
    • 2020
  • High voltage gain converters are essential for distributed power generation systems with renewable energy sources, such as fuel cells and solar cells, because of their low voltage characteristics. This paper introduces a novel nonisolated DC-DC converter topology developed by combining an inverting buck-boost converter and voltage multipliers. In the proposed converter, the input voltage is connected in series with the output, and the majority of the input power is directly delivered to the load. The voltage multipliers are stacked in series to achieve high step-up voltage gain. The voltage stress across all of the switches and capacitors can be significantly reduced. As a result, the switches with low voltage ratings can be used to achieve high efficiency and low cost. To verify the validity of the proposed topology, a 360-W prototype converter is built to obtain the experimental results.

Self Oscillation DC/DC Converter with High Voltage Step Up Ratio (고전압 변환비의 자려 발진 DC/DC Converter)

  • Jung, Yong-Joon;Han, Sang-Kyoo;Hong, Sung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.220-227
    • /
    • 2009
  • A self oscillation DC/DC converter which has a very desirable characteristics of the high input-output voltage conversion ratio for high voltage DC power supply applications is proposed in this paper. The proposed converter is composed of one power switch, one inductor, several capacitors and diodes. Compared with conventional high-voltage DC/DC converters, it performs the high- voltage power conversion using the inductor instead of the bulky step-up transformer. Therefore, it can reduce the size of magnetic device and save the cost. Moreover, since it needs no control IC by using self oscillation circuit and has lower voltage stress on output diodes, it features a lower cost, simpler structure and more improved performance. Finally, a comparative analysis and experimental results are presented to show the validity of the proposed converter.

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

An analysis of a phase- shifted parallel-input/series-output dual converter for high-power step-up applications (대용량 승압형 위상천이 병렬입력/직렬출력 듀얼 컨버터의 분석)

  • 강정일;노정욱;문건우;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.400-409
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output(PISO) dual converter for tush-power step-up applications has been proposed. Since the proposed converter shows a low switch turn-off voltage stress, switching devices with low conduction loss can be employed in order to improve the power conversion efficiency. Moreover, it features a low output capacitor root-mean-square(RMS) current stress, low input current and output voltage ripple contents, and fast control-to-output dynamics compared to its PWM counterpart. In this paper, the operation of the proposed converter is analyzed in detail and its mathematical models and steady-state solutions are presented. A comparative analysis with the conventional PWM PISO dual converter is also provided. To confirm the operation, features, and validity of the Proposed converter, experimental results from an 800W, 24-350Vdc prototype are presented.

  • PDF

Switched Inductor Z-Source AC-DC Converter

  • Sedaghati, Farzad;Hosseini, Seyed Hossein;Sarhangzadeh, Mitra
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • Due to the increasing amount of applications of power electronic ac-dc converters, it is necessary to design a single-stage converter that can reliably perform both buck and boost operations. Traditionally, this can be achieved by double-stage conversion (ac/dc-dc/dc) which ultimately leads to less efficiency and a more complex control system. This paper discusses two types of modern ac-dc converters. First, the novel impedance-source ac-dc converter, abbreviated as custom Z-source rectifier, is analyzed; and then, switched inductor (SL) Z-source ac-dc converter is proposed. This paper describes the Z-source rectifiers' operating principles, the concepts behind them, and their superiorities. Analysis and simulation results show that the proposed custom Z-source rectifier can step up and step down voltage; and the main advantage of the SL Z-source ac-dc converter is its high step-up capability. Low ripple of the output dc voltage is the other advantage of the proposed converters. Finally, the SL Z-source ac-dc converter is compared with the custom Z-source ac-dc converter.