• Title/Summary/Keyword: High speed wind tunnel test

Search Result 99, Processing Time 0.024 seconds

A study on design and performance test of fire door with high endurance performance in submarine tunnel (고내구성능을 갖는 해저터널 방화문 설계방안 및 성능시험 연구)

  • Park, Sang-Heon;Hwang, Ju-Hwan;Choi, Young-Hwan;An, Sung-Joo;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.331-346
    • /
    • 2018
  • In the tunnel of domestic high - speed railway, the main fire - fighting facility, fire - extinguishing passageway, is installed. However, due to the high pressure of the high - speed train, frequent breakage and maintenance are caused by strong shock and long - term vibration. In order to solve these problems, it is necessary to improve the fire door, but in Korea, it is installed by submitting a certificate by simple KS F 2296 performance test. At present, it is developed as a simple test certification by producing a real scale fireproof door without the theoretical examination in advance, so that a high cost for improvement is occurring in Korea. Therefore, through this study, structural analysis study which can preliminary structure review was carried out in order to design the refuge connection passage fire door and to improve the performance improvement. In order to secure the reliability of the result value, the official authentication test (KS F 2296) were compared.

Quantitative Analysis for Surface Recession of Ablative Materials Using High-speed Camera and 3D Profilometer (초고속 카메라와 삼차원 표면 측정기를 이용한 삭마 재료의 정량적 표면 침식 분석)

  • Choi, Hwa Yeong;Roh, Kyung Uk;Cheon, Jae Hee;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.735-741
    • /
    • 2018
  • In this paper, the surface recession of ablative materials was quantitatively analyzed using a high-speed camera and a three-dimensional profilometer. The ablation tests of the graphite and carbon/phenolic composite samples were performed using a 0.4 MW arc-heated wind tunnel for simulating the atmospheric re-entry environment. The real-time images during the ablation test were captured by the high-speed camera, and analyzed to calculate the surface recession and recession rate. Also, the surface data of samples were obtained using a three-dimensional profilometer, and the surface recession was precisely calculated from the difference of height between the surface data before and after the test. It is effective to complement the two measurement results in the comprehensive analysis of surface recession phenomena.

Experimental Investigation for the Shroud Separation in the Supersonic Flow (초음속 비행환경 조건에서의 슈라우드 분리시험 연구)

  • Kim, Jung-Young;Lee, Dong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.539-549
    • /
    • 2017
  • In this paper, experimental studies on the shroud separation were performed to investigate characteristics of the shroud separation at mach 3. Shroud separation tests were carried out in the vertical free-jet wind tunnel that is capable of testing separable structures. A shroud model was miniaturized to meet test objectives and test section dimensions of the wind tunnel. Pneumatic Locking and separation mechanisms were designed considering external force due to free stream. High speed cameras were used to record the shroud motion and unsteady shock patterns over the deploying shrouds during the shroud separation process. Also, unsteady pressures on the nose surface were measured by using the pressure sensors. Through the tests, the measurement data necessary for researches on the shroud separation technology were obtained. Shroud separation behaviors and characteristics of unsteady pressure on the nose surface for each external flow conditions were analyzed.

An Experimental Study on the Aerodynamic Characteristics of the Robust Optimized Shape of Pantograph Panhead (팬터그래프 팬헤드 강건최적형상에 대한 공기역학적 특성에 관한 실험적 연구)

  • Rho, Joo-Hyun;Kwak, Min-Ho;Park, Hoon-Il;Lee, Young-Bin;Lee, Dong-Ho;Cho, Hwan-Kee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2224-2229
    • /
    • 2008
  • High-Speed train has been developed and it becomes faster and environmental friendly. As trains run faster, Noise of trains is generated mainly by aerodynamic disturbance. Pantograph, both ends of trains, and gaps of coaches which are thought to be aerodynamic noise's factors are primarily studied. Pantograph is a similarly shaped metal framework on the roof of an electric high speed train, transmitting current from an overhead electric catenary wire. Panhead which contacts electric wires directly looks like a bluff strut, goes through flows, is sensitive to external disturbances and is one of the most important factors which decide whole vehicles' driving ability. In this study, aerodynamically robust optimized pantograph panhead shape is designed and then evaluated through subsonic wind tunnel test. To compare these with existing panhead rectangular shapes or circular cylinder shapes, By visualizing strong vortex flow patterns which are main noise sources, characteristics are compared and analyzed

  • PDF

Ballast Flying Probability Analysis for Ballast Types and Underbody Flow Conditions (자갈 종류 및 하부 유동 조건에 따른 자갈비산 확률 분석)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Park, Hoon-Il;Kwon, Hyeuk-Bin;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.829-834
    • /
    • 2009
  • A ballast-flying probabilitie is suggested for various ballast types, heighter types and underbody flow conditions as train speeds. The average speed of measured points is converted to the ballast-flying probabilities of BFPF which come from wind tunnel test data. Underbody flow fields are numerically simulated for the various conditions. The results show that the ballast-flying probability is steeply increased as train speed increased, and reaches a value of 87% at 350 km/h train speed. And the differences of probabilities among the ballast shapes are considerably high. The upper surface of heighter or tie is most probable area. Through this study, the ballast-flying Sensitivities with heighter was defined to understand the characteristics of ballast-flying probability on various conditions. And the ballast-flying probability can be reduced by the heighter.

Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge (자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, S.M.;Kim, Youn-J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.

A New Steady Approach to Predict the Transonic Buffet Onset (천음속 버펫 발단 예측을 위한 새로운 정상 접근 방법)

  • Jeong, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.12-18
    • /
    • 2006
  • A new steady approach has been developed to predict the transonic buffet onset of a high speed aircraft. In this paper, the flow is assumed to be steady for the buffet onset. The present study involves the analysis of a distinct change in the variation of various static aerodynamic parameters. These distinct changes indicates the onset of transonic buffet. Among the various aerodynamic parameters considered in this study, the variation in the center of pressure has shown to provide a clearest indicator of transonic buffet onset. This new steady approach can be applied to predict the transonic buffet onset for airfoils with shock induced separation bubble and for large swept wings with small aspect ratios. Good agreements have been obtained compared with unsteady wind tunnel buffet test data. Based on the results obtained the new steady approach, it can be newly suggested that the distinct slope changes of the center of pressure curve can be used as an indicator of buffet onset for the steady experimental method on a full aircraft configuration.

The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화)

  • Moon, Seok-Su;Abo-Serie, Essam;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.