• Title/Summary/Keyword: High reliability network

Search Result 491, Processing Time 0.023 seconds

Mobile Cloud System based on EMRA for Inbody Data

  • Lee, Jong-Sub;Moon, Seok-Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.327-333
    • /
    • 2021
  • Inbody is a tool for measuring health information with high reliability and accuracy to analyze body composition. Unlike the existing method of storing/processing and outputting data on the server side, the health information generated by InBody requires accurate support for health sharing and data analysis services using mobile devices. However, in the process of transmitting body composition measurement information to a mobile service, a problem may occur in data transmission/reception processing. The reason for this is that, since the network network in the cloud environment is used, if the connection is cut off or the connection is changed, it is necessary to provide a global service, not a temporary area, focusing on the mobility of InBody information. In addition, since InBody information is transmitted to mobile devices, a standard schema should be defined in the mobile cloud environment to enable information transfer between standardized InBody data and mobile devices. We propose a mobile cloud system using EMRA(Extended Metadata Registry Access) in which a mobile device processes and transmits body data generated in the inbody and manages the data of each local organization with a standard schema. The proposed system processes the data generated in InBody and converts it into a standard schema using EMRA so that standardized data can be transmitted. In addition, even when the mobile device moves through the area, the coordinator subsystem is in charge of providing access services. In addition, EMRA is applied to the collision problem due to schema heterogeneity occurring in the process of accessing data generated in InBody.

Multiple Sink Nodes to Improve Performance in WSN

  • Dick, Mugerwa;Alwabel, Mohammed;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.676-683
    • /
    • 2019
  • Wireless Sensor Networks (WSNs) consist of multiple tiny and power constrained sensors which use radio frequencies to carry out sensing in a designated sensor area. To effectively design and implement reliable WSN, it is critical to consider models, protocols, and algorithms that can optimize energy consumption of all the sensor nodes with optimal amount of packet delivery. It has been observed that deploying a single sink node comes with numerous challenges especially in a situation with high node density and congestion. Sensor nodes close to a single sink node receive more transmission traffic load compared to other sensors, thus causing quick depletion of energy which finally leads to an energy hole and sink hole problems. In this paper, we proposed the use of multiple energy efficient sink nodes with brute force technique under optimized parameters to improve on the number of packets delivered within a given time. Simulation results not only depict that, deploying N sink nodes in a sensor area has a maximum limit to offer a justifiable improvement in terms of packet delivery ratio but also offers a reduction in End to End delay and reliability in case of failure of a single sink node, and an improvement in the network lifetime rather than deploying a single static sink node.

Simulation of Dynamic Characteristics of a Trigenerative Climate Control System Based On Peltier Thermoelectric Modules

  • Vasilyev, G.S.;Kuzichkin, O.R.;Surzhik, D.I.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.252-257
    • /
    • 2021
  • The application of the principle of trigeneration allows to simultaneously provide electricity to power electronic devices, as well as heat and cold to create the necessary microclimate of the premises and increase efficiency compared to separate cooling and heating systems. The use of Peltier thermoelectric modules (TEM) as part of trigenerative systems allows for smooth and precise control of the temperature regime, high manufacturability and reliability due to the absence of moving parts, resistance to shock and vibration, and small weight and size parameters of the system. One of the promising areas of improvement of trigenerative systems is their modeling and optimization based on the automatic control theory. A block diagram and functional model of an energy-saving trigenerative climate control system based on Peltier modules are developed, and the transfer functions of an open and closed system are obtained. The simulation of the transient characteristics of the system with varying parameters of the components is performed. The directions for improving the quality of transients in the climate control system are determined, as well as the prospects of the proposed methodology for modeling and analyzing control systems operating in substantially nonlinear modes.

Power Plant Turbine Blade Anomaly Detection using Deep Neural Network-based Object Detection (깊은 신경망 기반 객체 검출을 이용한 발전 설비 터빈 블레이드 이상 탐지)

  • Yu, Jongmin;Lee, Jangwon;Oh, Hyeontaek;Park, Sang-Ki;Yang, Jinhong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • Due to the increase in the demand for anomaly detection according to the ageing of power generation facilities, the need for developing an anomaly detection method that can provide high-reliability turbine blade anomaly detection performance has been continuously raised. Additionally, the false detection results caused by a human error accelerates the increase of the need. In this paper, we propose an anomaly detection technique for turbine blades in power plants using deep neural networks. Experimental results prove that the proposed technique achieves stable anomaly detection performance while minimizing human factor intervention.

Price Monitoring Automation with Marketing Forecasting Methods

  • Oksana Penkova;Oleksandr Zakharchuk;Ivan Blahun;Alina Berher;Veronika Nechytailo;Andrii Kharenko
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.37-46
    • /
    • 2023
  • The main aim of the article is to solve the problem of automating price monitoring using marketing forecasting methods and Excel functionality under martial law. The study used the method of algorithms, trend analysis, correlation and regression analysis, ANOVA, extrapolation, index method, etc. The importance of monitoring consumer price developments in market pricing at the macro and micro levels is proved. The introduction of a Dummy variable to account for the influence of martial law in market pricing is proposed, both in linear multiple regression modelling and in forecasting the components of the Consumer Price Index. Experimentally, the high reliability of forecasting based on a five-factor linear regression model with a Dummy variable was proved in comparison with a linear trend equation and a four-factor linear regression model. Pessimistic, realistic and optimistic scenarios were developed for forecasting the Consumer Price Index for the situation of the end of the Russian-Ukrainian war until the end of 2023 and separately until the end of 2024.

Peer to Peer Search Algorithm based on Advanced Multidirectional Processing (개선된 다방향 프로세싱 기반 P2P 검색 알고리즘)

  • Kim, Boon-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.133-139
    • /
    • 2009
  • A P2P technology in distributed computing fields is presented various methods to share resources between network connected peers. This is very efficient that a degree of resources to good use as compared with peers by using centralized network by a few servers. However peers to compose P2P system is not always online status, therefore it is difficult to support high reliability to user. In our previous work of this paper, it is contributing to reduce the loading rates to select of new resource support peer but a selection method the peers to share works to download resources is very simple that it is just selected about peer to have lowest job. In this paper, we reduced frequency offline peers by estimate based on a average value of success rates for peers.

Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers

  • Zhengqi Tang;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.309-321
    • /
    • 2024
  • In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSO-BPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of cross-bracings would significantly increase after considering semi-rigid connections.

Standardization Trends and Military Communication Applications of Core Technologies of 5G NR (5G NR 핵심 기술의 표준동향 및 군 통신 적용 시나리오)

  • Seongjin Lee;Eunsoo Kim;Kihun Kim;Jongman Lee;Wan Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.611-618
    • /
    • 2024
  • 5G New Radio(NR) technology, with its focus on high speed, low latency, and connectivity, introduces crucial advancements like MIMO for enhanced reliability and transmission rates, edge computing for reduced latency, and IAB for extended coverage. However, military communication networks face challenges such as limited capacity, unpredictable mobility and communication dead zones. This paper delves into the trends of the above 5G NR technologies outlined by the 3GPP standard, exploring their potential applications within military infrastructure networks. Our aim is to underscore the benefits of harnessing these technologies in military settings. Additionally, through simulation, we forecast the advantages associated with integrating these core 5G NR technologies, thereby paving the way for enhanced military communication capabilities.

Development of an Optimal Convolutional Neural Network Backbone Model for Personalized Rice Consumption Monitoring in Institutional Food Service using Feature Extraction

  • Young Hoon Park;Eun Young Choi
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.4
    • /
    • pp.197-210
    • /
    • 2024
  • This study aims to develop a deep learning model to monitor rice serving amounts in institutional foodservice, enhancing personalized nutrition management. The goal is to identify the best convolutional neural network (CNN) for detecting rice quantities on serving trays, addressing balanced dietary intake challenges. Both a vanilla CNN and 12 pre-trained CNNs were tested, using features extracted from images of varying rice quantities on white trays. Configurations included optimizers, image generation, dropout, feature extraction, and fine-tuning, with top-1 validation accuracy as the evaluation metric. The vanilla CNN achieved 60% top-1 validation accuracy, while pre-trained CNNs significantly improved performance, reaching up to 90% accuracy. MobileNetV2, suitable for mobile devices, achieved a minimum 76% accuracy. These results suggest the model can effectively monitor rice servings, with potential for improvement through ongoing data collection and training. This development represents a significant advancement in personalized nutrition management, with high validation accuracy indicating its potential utility in dietary management. Continuous improvement based on expanding datasets promises enhanced precision and reliability, contributing to better health outcomes.

IEEE 802.11s based Wireless Mesh Networks for Smart Grid (스마트 그리드를 위한 IEEE 802.11s 기반 무선 메쉬 네트워크)

  • Jung, Ji-Sun;Kim, Jae-Beom;Ko, Young-Bae;Lee, Sang-Youm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1390-1398
    • /
    • 2010
  • We present the concept of applying Wireless Mesh Networking (WMN) technology into Smart Grid, which is recently rising as a potential technology in various areas thanks to its advantages such as low installation costs, high scalability, and high flexibility. Smart Grid is an intelligent, next-generation electrical power network that can maximize energy efficiency by monitoring utility information in real-time and controlling the flow of electricity with IT communications technology converged to the existing power grid. WMNs must be designed for Smart Grid communication systems considering not only the high level of reliability, QoS support and mass-data treatment but also the properties of the traditional power grid. In addition, it is essential to design techniques based on international standards to support interoperability and scalability. In this paper, we evaluate the performance of IEEE 802.11s based Smart Grid Mesh Networks by conducting preliminary simulation studies with the ns-3 simulator. We also outline some challenging issues that should be reviewed when considering WMNs as the candidate for Smart Grid communication infrastructure.