• Title/Summary/Keyword: High purity separation

Search Result 151, Processing Time 0.032 seconds

The High-throughput Solid-Phase Extraction in the Field of Synthetic Biology: Applications for the Food Industry and Food Managements

  • Hyeri SEONG;Min-Kyu KWAK
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.3
    • /
    • pp.19-22
    • /
    • 2024
  • The field of synthetic biology has emerged in response to the ongoing progress in the life sciences. Advances have been made in medicine, farming, eating, making materials, and more. Synthetic biology is the exploration of using living organisms to create new organisms. By manipulating specific genes to express targeted proteins, proteins can be created that are both productive and cost-effective. Solid-phase extraction (SPE) and liquid-liquid extraction (LLE) are employed for protein separation during the production process involving microorganisms. This study centers on Scanning Probe Microscopy (SPM) to showcase its utility in the food industry and food management. SPE is predominantly utilized as a pretreatment method to eliminate impurities from samples. In comparison to LLE, this method presents benefits such as decreased time and labor requirements, streamlined solvent extraction, automation capabilities, and compatibility with various other analytical instruments. Anion exchange chromatography (AEC) utilizes a similar methodology. Pharmaceutical companies utilize these technologies to improve the purity of biopharmaceuticals, thereby guaranteeing their quality. Used in the food and beverage industry to test chemical properties of raw materials and finished products. This exemplifies the potential of these technologies to enhance industrial development and broaden the scope of applications in synthetic biology.

Improved Genomic DNA Isolation from Soil (토양으로부터 genomic DNA의 효과적인 분리)

  • Kang Ju-Hyung;Kim Bo-Hye;Lee Sun-Yi;Kim Yeong-Jin;Lee Ju-Won;Park Young Min;Ahn Soon-Cheol
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.851-856
    • /
    • 2005
  • Although valuable microbes have been isolated from the soil for the various productions of useful components, the microbes which can be cultivated in the laboratory are only $0.1-1\%$ of all microbes. To solve this problem, the study has recently been tried for making the valuable components from the environment by directly separating unculturable micrbial DNA in the soil. But it is known that humic acid originated from the soil interrupts various restriction enzymes and molecular biological process. Thus, in order to prevent these problems, this study modified the method separated soil DNA with phenol, CTAB and PEG. In order to compare the degree of purity for each DNA and the molecular biological application process, $A_{260}/A_{280}$ ratio, restriction enzymes, and PCR were performed. In case of DNA by the modified method, total yield of DNA was lower but $A_{260}/A_{280}$ ratio was higher than the previously reported methods. It was confirmed that the degree of purity is improved by the modified method. But it was not cut off by all kinds of tested restriction enzymes because of the operation of a very small amount of interrupting substances. When PCR was operated with each diluted DNA in different concentrations and GAPDH primer, the DNA by the modified method could be processed for PCR in the concentration of 100 times higher than by the previously reported separation method. Therefore, this experiment can find out the possibility of utilization for the unknown substances by effectively removing the harmful materials including humic acid and help establishing metagenomic DNA library from the soil DNA having the high degree of purity.

Review on Free-Standing Polymer and Mixed-Matrix Membranes for H2/CO2 Separation (수소/이산화탄소 분리를 위한 프리스탠딩 고분자 및 혼합매질 분리막에 대한 총설)

  • Kang, Miso;Lee, So Youn;Kang, Du Ru;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.218-226
    • /
    • 2022
  • Hydrogen, a carrier of large-capacity chemical and clean energy, is an important industrial gas widely used in the petrochemical industry and fuel cells. In particular, hydrogen is mainly produced from fossil fuels through steam reforming and gasification, and carbon dioxide is generated as a by-product. Therefore, in order to obtain high-purity hydrogen, carbon dioxide should be removed. This review focused on free-standing polymeric membranes and mixed-matrix membranes (MMMs) that separate hydrogen from carbon dioxide reported in units of Barrer [1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]. By analyzing various recently reported papers, the structure, morphology, interaction, and preparation method of the membranes are discussed, and the structure-property relationship is understood to help find better membrane materials in the future. Robeson's upper bound limits for hydrogen/carbon dioxide separation were presented through reviewing the performance and characteristics of various separation membranes, and various MMMs that improve separation properties using technologies such as crosslinking, blending and heat treatment were discussed.

Mesoporous Silica-Carbon Composite Membranes for Simultaneous Hydrolysis and Separation of Chiral Epoxide (카본/메조세공 실리카 복합 막을 응용한 키랄 에폭사이드의 가수분해반응과 동시 분리)

  • Choi, Seong Dae;Jeon, Sang Kwon;Park, Geun Woo;Yang, Jin Young;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • The carbon/porous silica composite membrane was fabricated in a simple manner, which could be successfully for the simultaneous separation and production of chiral epoxides and 1,2-diols, based on their differences in hydrophilic/hydrophobic natures. The chiral Co(III)-$BF_3$ salen catalyst adopted in the membrane reactor system has given the very high enantioselectivity and recyclability in hydrolysis of terminal epoxides such as ECH, 1,2-EB, and SO. The optically pure epoxide and the chiral catalyst were collected in the organic phase after hydrolysis reaction. The hydrophilic water-soluble 1,2-diol product hydrolyzed by chiral salen diffused into the aqueous phase through the SBA-16 or NaY/SBA-16 silica composite layer during the reaction. The water acted simultaneously as a reactant and a solvent in the membrane system. One optical isomer was obtained with high purity and yield, and furthermore the catalysts could be recycled without observable loss in their activity in the continuous flow-type membrane reactor.

A Study on Synthesis of CaCO3 & MgO/Mg(OH)2 from Dolomite Using the Strong Acidic Cation Exchange Resin (강산성 양이온 교환수지를 통한 백운석으로부터 CaCO3 및 MgO/Mg(OH)2 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.812-825
    • /
    • 2019
  • Two dolomite samples mined from the different mines were calcined using a batch-type microwave kiln ($950/60min^{\circ}C$) to produce $CaO{\cdot}MgO$. The hydration of the $CaO{\cdot}MgO$ samples shows different reactivity. MgO was separated by reacting with a strong acid cation exchange resin using the reactivity of the hydration properties of light dolomite ($CaO{\cdot}MgO$). Calcium ($Ca-(R-SO_3)_2$) was separated from the prepared $CaO{\cdot}MgO$ by the cation exchange resin ($CaO{\cdot}MgO:R-SO_3H=1:12mass%$). High purity MgO (higher than 94 mass %) with unburned $CaCO_3$ (1~2 mass %) was obtained by the separation process. The separated MgO was heated at $950^{\circ}C$ for 60 minutes to afford high purity MgO with MgO content higher than 96%. And High-grade $CaCO_3$ was prepared from the reaction with calcium adsorbed resin ($Ca-(R-SO_3)_2$) and NaOH, $CO_2$ gas.

Rapid Isolation of Cyanidin 3-Glucoside and Peonidin 3-Glucoside from Black Rice (Oryza sativa) Using High-Performance Countercurrent Chromatography and Reversed-Phase Column Chromatography

  • Jeon, Heejin;Choi, Janggyoo;Choi, Soo-Jung;Lee, Chang Uk;Yoon, Shin Hee;Kim, Jinwoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.30-33
    • /
    • 2015
  • Anthocyanins are water soluble plant pigments which are responsible for the blue, red, pink, violet colors in several plant organs such as flowers, fruits, leaves and roots. In recent years, anthocyanin-rich foods have been favored as dietary supplements and health care products due to diverse biological activities of anthocyanins including antioxidant, anti-allergic, anti-diabetic, anti-microbial, anti-cancer and preventing cardiovascular disease. High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase medium pressure liquid chromatography (RP MPLC) method was applied for the rapid and efficient isolation of cyanidin 3-glucoside (C3G) and peonidin 3-glucoside (P3G) from black rice (Oryza sativa L., Poaceae). The crude black rice extract (500 mg) was subjected to HPCCC using two-phase solvent system composed of tert-butyl methyl ether/n-butanol/ acetonitrile/0.01% trifluoroacetic acid (TBME/B/A/0.01% TFA, 1 : 3 : 1 : 5, v/v, flow rate - 4.5 mL/min, reversed phase mode) to give enriched anthocyanin extract (37.4 mg), and enriched anthocyanin extract was sequentially chromatographed on RP-MPLC to yield C3G (16.5 mg) and P3G (8.7 mg). The recovery rate and purity of isolated C3G were 76.0% and 98.2%, respectively, and those of P3G were 58.3% and 96.3%, respectively. The present study indicates that HPCCC coupled with RP-MPLC method is more rapid and efficient than multi-step conventional column chromatography for the separation of anthocyanins.

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF

Process of the Selective Production of 1-Butene through Positional Isomerization from 2-Butenes (2-부텐으로부터 위치 이성화 반응을 통한 선택적 1-부텐의 제조 공정)

  • Ko, MinSu;Jeon, Jong-Ki;Cho, Jungho;Lee, Seong Jun;Lee, Jae Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.692-696
    • /
    • 2008
  • There is not much method of using C4 Raffinate III, despite having high olefin contents. The majority of the C4 Raffinate III have been converted into n-butane through hydrogenation, and sold as LPG. The C4 Raffinate III is rich 2-butenes with very low isobutene and isobutene contents. The 2-butenes are converted into 1-butene in the vicinity of thermodynamic equilibrium yield through positional isomerization with n-almumina catalyst calcinated at $400{\sim}600^{\circ}C$. The overall process is composed of isomerization-reactor, de-1-buteneizer to prepare the reactants and to enrich reactive products, and 1-butene column to product a high purity 1-butene. The production of 1-butene increases by 40~60 wt% with the selective positional isomerization from the existing separation method.

A new efficient route for synthesis of R,R- and S,S-hexamethylpropyleneamine oxime for labeling with technetium-99m

  • Vinay Kumar Banka;Young Ju Kim;Yun-Sang Lee;Jae Min Jeong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.75-91
    • /
    • 2020
  • [99mTc]Tc-Hexamethylpropylene amine oxime (HMPAO) is currently used as a regional cerebral blood flow imaging agent for single photon emission computed tomography (SPECT). The HMPAO ligand exists in two isomeric forms: d,l and meso showing different properties in vivo. Later studies indicated that brain uptake patterns of 99mTc-complexes formed from separated enantiomers differed. Separation of enantiomers is difficult by fractional crystallizations method. Usually, the substance is obtained in low chemical yield in a time-consuming procedure. Furthermore, the final product still contains some impurity. So we have developed new efficient route for synthesis of R,R- and S,S-HMPAO enantiomeric compounds in 6-steps. Nucleophilic substitution (SN2) reactions of 2,2-dimethylpropane-1,3-diamine either with S- (1a) or R-methyl2-chloropropanoate (1b) were performed to produce compounds R,R- (2a) or S,S-isomer (2b) derivatives protected with benzylchloroformate (Cbz), respectively. And then Weinreb amide and methylation reaction using Grignard reagent, oxime formation with ketone group and deprotectiion of Cbz group by hydrogenolysis gave S,S- (7a) or R,R-HMPAO (7b), respectively. Entaniomeric compounds were synthesied with high yield and purity without any undesired product. The 7a or 7b kits containing 10 ㎍ SnCl2-2H2O were labeled with 99mTc with high radiolabeling yield (90%).