• 제목/요약/키워드: High pressure hydrogen gas

검색결과 319건 처리시간 0.022초

실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구 (Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects)

  • 김재형;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

액체 수소 BOG 안전 압력 유지 및 제어를 위한 극저온 용기의 수치 해석 모델 개발 (Development of Numerical Analysis Model on Cryogenic Vessel for Safety Pressure Maintenance and Control of Liquid Hydrogen BOG)

  • 서영민;노현우;구태형;하동우;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.280-289
    • /
    • 2024
  • In this study, a cryogenic vessel was constructed to maintain and control the safe pressure of liquid hydrogen boil-off gas (BOG), and the numerical analysis was conducted on the development of computational fluid dynamics model inside the high-pressure vessel. An evaluation system was constructed using cryogenic inner and outer containers, pre-cooler, upper flange, and internal high-pressure container. We attempted to analyze the performance of the safety valve by injecting relatively high temperature hydrogen gas to generate BOG gas and quickly control the pressure of the high-pressure vessel up to 10 bar. As a results, the liquid volume fraction decreased with a rapid evaporation, and the pressure distribution increased monotonically inside a high pressure vessel. Additionally, it was found that the time to reach 10 bar was greatly affected by the filling rate of liquid hydrogen.

연료전지 차량용 고압기체수소 저장용기(Type4)개발;설계검증시험 (Development of the High Pressure Hydrogen Gas Cylinder(Type4) for Fuel Cell Vehicle;Design Qualification Tests)

  • 유계형;주용선;허석봉;전상진;김종열;이중희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.193-196
    • /
    • 2007
  • We developed and tested the high pressure hydrogen gas cylinder(type4) for fuel cell vehicle. The working pressure is 350bar. We conducted material tests, production tests and design qualification tests on the developed cylinders according to modified NGV2-2000(hydrogen). The high pressure hydrogen gas cylinder met all the design qualification requirements of ANSI/CSA NGV2-2000 and acquired NGV2 certification from independent inspection agency.

  • PDF

수소전기차용 EPDM 고무의 충전재 입자 크기별 고압 수소 환경에서의 거동 연구 (Influence of Filler Particle Size on Behaviour of EPDM Rubber for Fuel Cell Vehicle Application under High-Pressure Hydrogen Environment)

  • 김기정;전형렬;강영임;김완진;염지웅;최성준;조성민
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.453-458
    • /
    • 2020
  • In this study, ethylene-propylene-diene monomer (EPDM) rubbers reinforced with various particle size of carbon black were prepared and tested. We followed recently published CSA/ANSI CHMC2 standard "the test methods for evaluating material compatibility in compressed hydrogen applications-polyemr". Measurement of change in hardness, tensile strength and volume were performed after exposure to maximum operating pressure, 87.5 MPa, for 168 hours (1 week). Once EPDM was exposed to high-pressure hydrogen, the samples experience volume increase and degradation of the physical properties. Also, after the dissolved hydrogen was fully eliminated from the specimens, the hardness and the tensile properties were not recovered. The rubber reinforced with smaller sizes of carbon black particles showed less volume expansion and decrease of physical properties. As a result, smaller particle size of carbon black filler led to more resistance to high-pressure hydrogen.

국내 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 항목 분석 (An Analysis of Safety Management Items for Low Pressure Hydrogen Facility below 0.1MPa in Domestic Hydrogen Town)

  • 이덕권;허두현;이선규;이정운;유근준;이연재;김희식
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.85-91
    • /
    • 2015
  • 전 세계적으로 수소에너지에 대한 관심이 점차 증가함에 따라 수소 생산, 저장, 운송, 이용 분야에서 응용 기술의 개발이 활발히 진행되고 있다. 국내에서도 울산 수소타운을 조성하여 시범운영 중에 있어 수소에너지 응용처 확대에 대한 가능성을 높이고 있다. 울산 수소타운은 가스 사용 압력에 따라 고압부와 저압부로 구분할 수 있는데 고압부는 '고압가스안전관리법'을 적용하여 안전관리를 하고 있고 저압부는 '수소타운 시범사업의 안전관리에 관한 지침'을 적용하여 운영 중에 있다. 본 논문에서는 울산 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 효율성 향상을 위해 저압 수소사용 시설 및 안전관리 항목 분석을 통해 안전관리 방향성을 검토하고 향후 개선 방향을 제시하고자 하였다. 본 연구의 결과를 통해 국내 수소타운 활성화 및 안전 관리 효율성 증대에 도움이 될 수 있을 것으로 기대한다.

고압수소 유량계측용 임계노즐 유동의 수치해석적 연구 (A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement)

  • 이준희;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

면적비 변화에 따른 튜브 내 고압 수소 자발점화현상 연구 (A study of area-ratio effect on self-ignition of high pressure hydrogen gas released in to a tube)

  • 윤희;이상윤;정만철;정인석;이형진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.147-150
    • /
    • 2015
  • When high-pressure gas is suddenly leaked out into the air, unexpected ignition occurs without any external ignition source. Until now, there have been investigations on self-ignition of hydrogen by supplying high-pressure hydrogen gas into a tube. However the mechanism of hydrogen ignition is still unclear. This paper describes the area-ratio effect on hydrogen ignition by inserting a brass plate. The results show that the ignition phenomena differ as the area-ratio changed. Also, the rupture pressure for self-ignition has to be higher.

  • PDF

파열 압력에 따른 튜브 내 고압 수소 누출에 의한 자발점화 현상 (Spontaneous Ignition of High Pressure Hydrogen Gas released into Tube due to the Burst Pressure Variation)

  • 이형진;김성돈;김세환;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.93-96
    • /
    • 2012
  • The spontaneous ignition mechanism of high pressure hydrogen gas released into tube is well-deduced from previous studies. However, those results have a limit because the studies have been conducted at low burst pressure of about 10 MPa. In this study, the process or ignition feature are investigated with higher burst pressure of up to 30 MPa through numerical analysis. The results show that the trend of ignition became to be different with a burst pressure. While two reaction regions is important to initiate the ignition when burst pressure is about 10 MPa, the reaction of the core region does not play a role in ignition inside the tube when a burst pressure is above 20 MPa.

  • PDF

수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산 (Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor)

  • 송기남;김용완
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF