• Title/Summary/Keyword: High precision stage

Search Result 293, Processing Time 0.038 seconds

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail (DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석)

  • Shim, Jongyoup;Khim, Gyungho;Hwang, Jooho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

The Rhythm of Education in Mathematics Education (수학교육에서 살리는 '교육의 리듬')

  • Cha Joo-Yeon
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.375-389
    • /
    • 2005
  • Whitehead proposed that the education proceed through the rhythmic cycle on the basis of his metaphysical philosophy and educational philosophy. 'The Rhythm of Education' means that the intellectual levels of learners are elevated through the rhythmic cycles of stages of romance, precision, and generalization over and over again. As a result of these cyclic repetitions, the learners become truly free of inner prejudice. This study is to seek a method to apply Whitehead's proposition to mathematics education. I devise the curriculum constructing methods to experience Whitehead's three stages meaningfully, the teaching methods interplaying freedom and discipline rhythmically, and the teaching examples which adopt all these.

  • PDF

Study on Structural and Stability Analyses of the Main Parts of a High-Precision Grinding Machine Considering the Cutting Force (절삭력을 고려한 고정밀 연삭기 핵심부품의 구조해석 및 안정성에 관한 연구)

  • Kim, In-Woo;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.693-698
    • /
    • 2015
  • Recently, the quality of products after the corresponding machining processes were scrutinized in the interest of maintaining a high product-quality standard. The structure and stability of machine tools are important for the prediction of product quality. A structural analysis needs to be carried out to achieve the stable design of machine tools before the initial design stage in the manufacturing process of a precision product. In this study, a structural analysis was carried out using a finite element analysis (FEA) simulation to obtain the design stability of the main parts of a grinding machine. The sizes and locations of both the maximum stress and deformation in consideration of the cutting force of the chuck, tail stock, and bearing of the grinding machine were analyzed. Finally the grinding machine was successfully developed.

Analysis of the Suspension Characteristics for Next generation High Speed Train on the View of Concept Design (개념적 관점에서 차세대고속철도차량의 현가요소 특성 분석)

  • Park, Chan-Kyoung;Kim, Yong-Guk;Kim, Ki-Whan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.835-840
    • /
    • 2008
  • Next Generation High Speed Train having a distributed electrical motor system has just been developing to aim the experimental maximum speed at 400km/h since August, 2007. This project is in stage of concept design and so, it needs to take some review and analysis the characteristics of suspensions on the view of concept design. A vehicle modeling is made of modified Korean High Speed Train bogie model with Vampire program and analyzed the effect on the dynamic performances according to the variation of primary and secondary suspension characteristics. The results would be useful to manage the potential risks in the next stage of basic and precision design that will be done by the manufacturing company.

  • PDF

진공용 나노 스테이지 개발을 위한 고찰

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.223-228
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modern products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of maskless fabrication. Therefore, the application of FIB technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few $\mu\;\textrm{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and 10nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about $1\times10^{-7}$ torr. This paper presents the concept of nano stages and the discussion of the material treatment for ultra high vacuum.

  • PDF

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

A Study on the Precision Position Control for the Linear BLDC Motor (선형 브러시리스 DC 모터의 정밀 위치제어에 관한 연구)

  • Chun, Yeong-Han;Kim, Ji-Won;Jeon, Jin-Hong;Jeon, Jeong-Woo;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.417-422
    • /
    • 2001
  • The brushless DC motor(BLDCM) is widely used in many applications. One of the application of the BLDCM is the stage which is one of process in the semiconductor manufacturing processes. Very high performance is required in the stage process. In this paper, the 1 degree of freedom positioning system for the basic technology of the stage is studied. The linearization method is proposed to make the controller design procedures easy by measuring the thrust force ripple using the strain gauge. And through the experiments, it is proved that the inner velocity control loop is necessary to make more precise positioning control system.

  • PDF

A Study on the Displacement Magnification Mechanism of Two-Lever System using Flexure Hinge (유연 힌지를 이용한 이중레버 시스템의 변위증폭 메카니즘에 관한 연구)

  • Jea, Wone-Soo;Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • The high-technology industries including a semi-conductor and an information communication need an ultra-precision technology from the technological points of view. Nano technology based on an ultra-precision technology is being studied to overcome the delicate technology that may occur in the semi-conductor fields. Then, the transferring equipment with high resolution and long displacement becomes an important technology. The goal of this study is to analyze the displacement magnification mechanism driven by piezoelectric actuator which has high resolution and fast response characteristics using flexure hinge with the merits of soft displacement, negligible back-lash and stick-slip, and no-lubrication. The analyses to reduce the magnification losses occurred during the magnification process are performed using ANSYS software based on FEM. The five design variables such as arm thickness, thickness of hinge, radius of hinge, length of input side at the 1st lever and magnification ratio of 1st lever are optimized to induce the maximum magnification ratio using Taguchi method.

  • PDF

사출성형의 보압과정에 관한 연구

  • 이호상;전형환;한진현;설권;한창훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.46-50
    • /
    • 2001
  • Due to its ability in producing a net-shape product to high precision in a very shot cycle time, injection molding has become one of the most important polymer-processings in the industry today. Recently the CAE applications in the field of injection molding have provided significant contributions to the mold design and process optimization. As a part of such an application the packing process has been studied using C-PARK. The prediction of pressure variations during post-filling stage for amorphous material has been compared with an experimental observation for a simple rectangular geometry of uniform thickness. And the optimal packing processes were calculated using the cavity pressure curve near the gate. As a case study, a warpage simulation was carried out for a DY-HOLDER with the variable number of gates.

Development of Monitoring/Control System for High Productive Grinding System (생산성 향상을 위한 연삭공정의 감시.제어시스템 개발)

  • 정병철;안중환;이상우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.425-428
    • /
    • 1994
  • Non-uniform minute deformation of a cylinderical workpiece resulted from the heat treatment process prior to the grinding makes it diffeclt to control the approaching feedrate of a grinding wheelto a workpiece optimallywithout on-site detection of the grinding states in the plunge grinding. The 4-stage model of the plunge grinding process is proposed according to the state of contact between grinding wheel and workpiece ; precontact, partial contact, entire contact and spark-out. Despite of being scrious to the precision of workpiece finished, the duration of spark-out is determined empirically. The purpose of this research is to develop a monitoring/control system for saving non- production time and setting the optimal spark-out time based on sensor information in the plunge grinding using AE and ultra sonic sensor.

  • PDF